156 research outputs found

    Uncertainty of CERES-maize calibration under different irrigation strategies using pest optimization algorithm

    Full text link
    © 2019 by the authors. An important but rarely studied aspect of crop modeling is the uncertainty associated with model calibration and its effect on model prediction. Biomass and grain yield data from a four-year maize experiment (2008–2011) with six irrigation treatments were divided into subsets by either treatments (Calibration-by-Treatment) or years (Calibration-by-Year). These subsets were then used to calibrate crop cultivar parameters in CERES (Crop Environment Resource Synthesis)-Maize implemented within RZWQM2 (Root Zone Water Quality Model 2) using the automatic Parameter ESTimation (PEST) algorithm to explore model calibration uncertainties. After calibration for each subset, PEST also generated 300 cultivar parameter sets by assuming a normal distribution of each parameter within their reported values in the literature, using the Latin hypercube sampling (LHS) method. The parameter sets that produced similar goodness of fit (11–164 depending on subset used for calibration) were then used to predict all the treatments and years of the entire dataset. Our results showed that the selection of calibration datasets greatly affected the calibrated crop parameters and their uncertainty, as well as prediction uncertainty of grain yield and biomass. The high variability in model prediction of grain yield and biomass among the six (Calibration-by-Treatment) or the four (Calibration-by-Year) scenarios indicated that parameter uncertainty should be considered in calibrating CERES-Maize with grain yield and biomass data from different irrigation treatments, and model predictions should be provided with confidence intervals

    Use-Exposure Relationships of Pesticides for Aquatic Risk Assessment

    Get PDF
    Field-scale environmental models have been widely used in aquatic exposure assessments of pesticides. Those models usually require a large set of input parameters and separate simulations for each pesticide in evaluation. In this study, a simple use-exposure relationship is developed based on regression analysis of stochastic simulation results generated from the Pesticide Root-Zone Model (PRZM). The developed mathematical relationship estimates edge-of-field peak concentrations of pesticides from aerobic soil metabolism half-life (AERO), organic carbon-normalized soil sorption coefficient (KOC), and application rate (RATE). In a case study of California crop scenarios, the relationships explained 90–95% of the variances in the peak concentrations of dissolved pesticides as predicted by PRZM simulations for a 30-year period. KOC was identified as the governing parameter in determining the relative magnitudes of pesticide exposures in a given crop scenario. The results of model application also indicated that the effects of chemical fate processes such as partitioning and degradation on pesticide exposure were similar among crop scenarios, while the cross-scenario variations were mainly associated with the landscape characteristics, such as organic carbon contents and curve numbers. With a minimum set of input data, the use-exposure relationships proposed in this study could be used in screening procedures for potential water quality impacts from the off-site movement of pesticides

    Contribution of Alaskan glaciers to sea level rise derived from satellite imagery

    Get PDF
    International audienceOver the last 50 years, retreating glaciers and ice caps (GIC) contributed 0.5 mm/yr to sea level rises (SLR), and one third is believed to originate from ice masses bordering the Gulf of Alaska. However, these estimates of ice wastage in Alaska are based on methods that measure a limited number of glaciers and extrapolate the results to estimate ice loss for the many thousands of others. How these methods capture the complex pattern of decadal elevation changes at the scale of individual glacier and mountain range is unclear. Here, combining a comprehensive glacier inventory with elevation changes derived from sequential digital elevation models (DEMs), we found that, between 1962 and 2006, Alaskan glaciers lost 41.9 ± 8.6 km**3/yr water equivalent (w.e.) and contributed 0.12±0.02 mm/yr to SLR. Our ice loss is 34% lower than previous estimates. Reasons for our lower values include the higher spatial resolution of our glacier inventory and the reduction of ice thinning under debris and at the glacier margins which were not resolved in earlier work. Estimates of mass loss from GIC in other mountain regions could be subject to similar revisions

    The minor C-allele of rs2014355 in ACADS is associated with reduced insulin release following an oral glucose load

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A genome-wide association study (GWAS) using metabolite concentrations as proxies for enzymatic activity, suggested that two variants: rs2014355 in the gene encoding short-chain acyl-coenzyme A dehydrogenase (<it>ACADS</it>) and rs11161510 in the gene encoding medium-chain acyl-coenzyme A dehydrogenase (<it>ACADM</it>) impair fatty acid ÎČ-oxidation. Chronic exposure to fatty acids due to an impaired ÎČ-oxidation may down-regulate the glucose-stimulated insulin release and result in an increased risk of type 2 diabetes (T2D). We aimed to investigate whether the two variants associate with altered insulin release following an oral glucose load or with T2D.</p> <p>Methods</p> <p>The variants were genotyped using KASPar<sup>Âź </sup>PCR SNP genotyping system and investigated for associations with estimates of insulin release and insulin sensitivity following an oral glucose tolerance test (OGTT) in a random sample of middle-aged Danish individuals (<it>n</it><sub><it>ACADS </it></sub>= 4,324; <it>n</it><sub><it>ACADM </it></sub>= 4,337). The T2D-case-control study involved a total of ~8,300 Danish individuals (<it>n</it><sub><it>ACADS </it></sub>= 8,313; <it>n</it><sub><it>ACADM </it></sub>= 8,344).</p> <p>Results</p> <p>In glucose-tolerant individuals the minor C-allele of rs2014355 of <it>ACADS </it>associated with reduced measures of serum insulin at 30 min following an oral glucose load (per allele effect (ÎČ) = -3.8% (-6.3%;-1.3%), <it>P </it>= 0.003), reduced incremental area under the insulin curve (ÎČ = -3.6% (-6.3%;-0.9%), <it>P </it>= 0.009), reduced acute insulin response (ÎČ = -2.2% (-4.2%;0.2%), <it>P </it>= 0.03), and with increased insulin sensitivity ISI<sub>Matsuda </sub>(ÎČ = 2.9% (0.5%;5.2%), <it>P </it>= 0.02). The C-allele did not associate with two other measures of insulin sensitivity or with a derived disposition index. The C-allele was not associated with T2D in the case-control analysis (OR 1.07, 95% CI 0.96-1.18, <it>P </it>= 0.21). rs11161510 of <it>ACADM </it>did not associate with any indices of glucose-stimulated insulin release or with T2D.</p> <p>Conclusions</p> <p>In glucose-tolerant individuals the minor C-allele of rs2014355 of <it>ACADS </it>was associated with reduced measures of glucose-stimulated insulin release during an OGTT, a finding which in part may be mediated through an impaired ÎČ-oxidation of fatty acids.</p

    UCP1 Induction during Recruitment of Brown Adipocytes in White Adipose Tissue Is Dependent on Cyclooxygenase Activity

    Get PDF
    Background The uncoupling protein 1 (UCP1) is a hallmark of brown adipocytes and pivotal for cold- and diet-induced thermogenesis. Methodology/Principal Findings Here we report that cyclooxygenase (COX) activity and prostaglandin E2 (PGE2) are crucially involved in induction of UCP1 expression in inguinal white adipocytes, but not in classic interscapular brown adipocytes. Cold-induced expression of UCP1 in inguinal white adipocytes was repressed in COX2 knockout (KO) mice and by administration of the COX inhibitor indomethacin in wild-type mice. Indomethacin repressed ÎČ-adrenergic induction of UCP1 expression in primary inguinal adipocytes. The use of PGE2 receptor antagonists implicated EP4 as a main PGE2 receptor, and injection of the stable PGE2 analog (EP3/4 agonist) 16,16 dm PGE2 induced UCP1 expression in inguinal white adipose tissue. Inhibition of COX activity attenuated diet-induced UCP1 expression and increased energy efficiency and adipose tissue mass in obesity-resistant mice kept at thermoneutrality. Conclusions/Significance Our findings provide evidence that induction of UCP1 expression in white adipose tissue, but not in classic interscapular brown adipose tissue is dependent on cyclooxygenase activity. Our results indicate that cyclooxygenase-dependent induction of UCP1 expression in white adipose tissues is important for diet-induced thermogenesis providing support for a surprising role of COX activity in the control of energy balance and obesity development

    Defining novel functions for cerebrospinal fluid in ALS pathophysiology

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Can human amblyopia be treated in adulthood?

    Get PDF
    Amblyopia is a common visual disorder that results in a spatial acuity deficit in the affected eye. Orthodox treatment is to occlude the unaffected eye for lengthy periods, largely determined by the severity of the visual deficit at diagnosis. Although this treatment is not without its problems (poor compliance, potential to reduce binocular function, etc) it is effective in many children with moderate to severe amblyopia. Diagnosis and initiation of treatment early in life are thought to be critical to the success of this form of therapy. Occlusion is rarely undertaken in older children (more than 10 years old) as the visual benefits are considered to be marginal. Therefore, in subjects where occlusion is not effective or those missed by mass screening programs, there is no alternative therapy available later in life. More recently, burgeoning evidence has begun to reveal previously unrecognized levels of residual neural plasticity in the adult brain and scientists have developed new genetic, pharmacological, and behavioral interventions to activate these latent mechanisms in order to harness their potential for visual recovery. Prominent amongst these is the concept of perceptual learning—the fact that repeatedly practicing a challenging visual task leads to substantial and enduring improvements in visual performance over time. In the normal visual system the improvements are highly specific to the attributes of the trained stimulus. However, in the amblyopic visual system, learned improvements have been shown to generalize to novel tasks. In this paper we ask whether amblyopic deficits can be reduced in adulthood and explore the pattern of transfer of learned improvements. We also show that developing training protocols that target the deficit in stereo acuity allows the recovery of normal stereo function even in adulthood. This information will help guide further development of learning-based interventions in this clinical group
    • 

    corecore