9 research outputs found
Rasgrp1 mutation increases naïve T-cell CD44 expression and drives mTOR-dependent accumulation of Helios+ T cells and autoantibodies
Missense variants are a major source of human genetic variation. Here we analyze a new mouse missense variant, Rasgrp1Anaef, with an ENU-mutated EF hand in the Rasgrp1 Ras guanine nucleotide exchange factor. Rasgrp1Anaef mice exhibit anti-nuclear autoantibodies and gradually accumulate a CD44hi Helios+ PD-1+ CD4+ T cell population that is dependent on B cells. Despite reduced Rasgrp1-Ras-ERK activation in vitro, thymocyte selection in Rasgrp1Anaef is mostly normal in vivo, although CD44 is overexpressed on naïve thymocytes and T cells in a T-cell-autonomous manner. We identify CD44 expression as a sensitive reporter of tonic mTOR-S6 kinase signaling through a novel mouse strain, chino, with a reduction-of-function mutation in Mtor. Elevated tonic mTOR-S6 signaling occurs in Rasgrp1Anaef naïve CD4+ T cells. CD44 expression, CD4+ T cell subset ratios and serum autoantibodies all returned to normal in Rasgrp1AnaefMtorchino double-mutant mice, demonstrating that increased mTOR activity is essential for the Rasgrp1Anaef T cell dysregulation
Rasgrp1 mutation increases naïve T-cell CD44 expression and drives mTOR-dependent accumulation of Helios⁺ T cells and autoantibodies
Missense variants are a major source of human genetic variation. Here we analyze a new mouse missense variant, Rasgrp1ᴬⁿᵃᵉᶠ, with an ENU-mutated EF hand in the Rasgrp1 Ras guanine nucleotide exchange factor. Rasgrp1ᴬⁿᵃᵉᶠ mice exhibit anti-nuclear autoantibodies and gradually accumulate a CD44hi Helios⁺ PD-1⁺ CD4⁺ T cell population that is dependent on B cells. Despite reduced Rasgrp1-Ras-ERK activation in vitro, thymocyte selection in Rasgrp1ᴬⁿᵃᵉᶠ is mostly normal in vivo, although CD44 is overexpressed on naïve thymocytes and T cells in a T-cell-autonomous manner. We identify CD44 expression as a sensitive reporter of tonic mTOR-S6 kinase signaling through a novel mouse strain, chino, with a reduction-of-function mutation in Mtor. Elevated tonic mTOR-S6 signaling occurs in Rasgrp1ᴬⁿᵃᵉᶠ naïve CD4⁺ T cells. CD44 expression, CD4⁺ T cell subset ratios and serum autoantibodies all returned to normal in Rasgrp1ᴬⁿᵃᵉᶠMtorᶜʰⁱⁿᵒ double-mutant mice, demonstrating that increased mTOR activity is essential for the Rasgrp1ᴬⁿᵃᵉᶠ T cell dysregulation
Rasgrp1 mutation increases naïve T-cell CD44 expression and drives mTOR-dependent accumulation of Helios+ T cells and autoantibodies
Missense variants are a major source of human genetic variation. Here we analyze a new mouse missense variant, Rasgrp1(Anaef), with an ENU-mutated EF hand in the Rasgrp1 Ras guanine nucleotide exchange factor. Rasgrp1(Anaef) mice exhibit anti-nuclear autoantibodies and gradually accumulate a CD44(hi) Helios(+) PD-1(+) CD4(+) T cell population that is dependent on B cells. Despite reduced Rasgrp1-Ras-ERK activation in vitro, thymocyte selection in Rasgrp1(Anaef) is mostly normal in vivo, although CD44 is overexpressed on naïve thymocytes and T cells in a T-cell-autonomous manner. We identify CD44 expression as a sensitive reporter of tonic mTOR-S6 kinase signaling through a novel mouse strain, chino, with a reduction-of-function mutation in Mtor. Elevated tonic mTOR-S6 signaling occurs in Rasgrp1(Anaef) naïve CD4(+) T cells. CD44 expression, CD4(+) T cell subset ratios and serum autoantibodies all returned to normal in Rasgrp1(Anaef)Mtor(chino) double-mutant mice, demonstrating that increased mTOR activity is essential for the Rasgrp1(Anaef) T cell dysregulation. DOI: http://dx.doi.org/10.7554/eLife.01020.00
Kupffer cell heterogeneity: functional properties of bone marrow–derived and sessile hepatic macrophages
Kupffer cells form a large intravascular macrophage bed in the liver sinusoids. The differentiation history and diversity of Kupffer cells is disputed; some studies argue that they are derived from blood monocytes, whereas others support a local origin from intrahepatic precursor cells. In the present study, we used both flow cytometry and immunohistochemistry to distinguish 2 subsets of Kupffer cells that were revealed in the context both of bone marrow transplantation and of orthotopic liver transplantation. One subset was radiosensitive and rapidly replaced from hematogenous precursors, whereas the other was relatively radioresistant and long-lived. Both were phagocytic but only the former population was recruited into inflammatory foci in response to CD8+ T-cell activation. We propose the name “sessile” for the radioresistant Kupffer cells that do not participate in immunoinflammatory reactions. However, we found no evidence that these sessile Kupffer cells arise from immature intrahepatic precursors. Our conclusions resolve a long-standing controversy and explain how different experimental approaches may reveal one or both of these subsets
Kupffer Cell-Dependent Hepatitis Occurs during Influenza Infection
Respiratory infections, including influenza in humans, are often accompanied by a hepatitis that is usually mild and self-limiting. The mechanism of this kind of liver damage is not well understood. In the present study, we show that influenza-associated hepatitis occurs due to the formation of inflammatory foci that include apoptotic hepatocytes, antigen-specific CD8(+) T cells, and Kupffer cells. Serum aminotransaminase levels were elevated, and both the histological and serum enzyme markers of hepatitis were increased in secondary influenza infection, consistent with a primary role for antigen-specific T cells in the pathogenesis. No virus could be detected in the liver, making this a pure example of “collateral damage” of the liver. Notably, removal of the Kupffer cells prevented the hepatitis. Such hepatic collateral damage may be a general consequence of expanding CD8(+) T-cell populations during many extrahepatic viral infections, yielding important implications for liver pathobiology