1,926 research outputs found

    Transcript of Origins of the Ukranian Fleet

    Get PDF
    This story is an excerpt from a longer interview that was collected as part of the Launching through the Surf: The Dory Fleet of Pacific City project. In this story, Noel Knopf and his son, Albert Knopf, recount the origins of the Ukranian Fleet, a group of California teachers and their children who dory fished in Pacific City during the summers

    The Potential of Synergistic Static, Dynamic and Speculative Loop Nest Optimizations for Automatic Parallelization

    Get PDF
    Research in automatic parallelization of loop-centric programs started with static analysis, then broadened its arsenal to include dynamic inspection-execution and speculative execution, the best results involving hybrid static-dynamic schemes. Beyond the detection of parallelism in a sequential program, scalable parallelization on many-core processors involves hard and interesting parallelism adaptation and mapping challenges. These challenges include tailoring data locality to the memory hierarchy, structuring independent tasks hierarchically to exploit multiple levels of parallelism, tuning the synchronization grain, balancing the execution load, decoupling the execution into thread-level pipelines, and leveraging heterogeneous hardware with specialized accelerators. The polyhedral framework allows to model, construct and apply very complex loop nest transformations addressing most of the parallelism adaptation and mapping challenges. But apart from hardware-specific, back-end oriented transformations (if-conversion, trace scheduling, value prediction), loop nest optimization has essentially ignored dynamic and speculative techniques. Research in polyhedral compilation recently reached a significant milestone towards the support of dynamic, data-dependent control flow. This opens a large avenue for blending dynamic analyses and speculative techniques with advanced loop nest optimizations. Selecting real-world examples from SPEC benchmarks and numerical kernels, we make a case for the design of synergistic static, dynamic and speculative loop transformation techniques. We also sketch the embedding of dynamic information, including speculative assumptions, in the heart of affine transformation search spaces

    Embedding contrastive unsupervised features to cluster in- and out-of-distribution noise in corrupted image datasets

    Full text link
    Using search engines for web image retrieval is a tempting alternative to manual curation when creating an image dataset, but their main drawback remains the proportion of incorrect (noisy) samples retrieved. These noisy samples have been evidenced by previous works to be a mixture of in-distribution (ID) samples, assigned to the incorrect category but presenting similar visual semantics to other classes in the dataset, and out-of-distribution (OOD) images, which share no semantic correlation with any category from the dataset. The latter are, in practice, the dominant type of noisy images retrieved. To tackle this noise duality, we propose a two stage algorithm starting with a detection step where we use unsupervised contrastive feature learning to represent images in a feature space. We find that the alignment and uniformity principles of contrastive learning allow OOD samples to be linearly separated from ID samples on the unit hypersphere. We then spectrally embed the unsupervised representations using a fixed neighborhood size and apply an outlier sensitive clustering at the class level to detect the clean and OOD clusters as well as ID noisy outliers. We finally train a noise robust neural network that corrects ID noise to the correct category and utilizes OOD samples in a guided contrastive objective, clustering them to improve low-level features. Our algorithm improves the state-of-the-art results on synthetic noise image datasets as well as real-world web-crawled data. Our work is fully reproducible github.com/PaulAlbert31/SNCF.Comment: Accepted at ECCV 202

    Reliable Label Bootstrapping for Semi-Supervised Learning

    Get PDF
    Reducing the amount of labels required to train convolutional neural networks without performance degradation is key to effectively reduce human annotation efforts. We propose Reliable Label Bootstrapping (ReLaB), an unsupervised preprossessing algorithm which improves the performance of semi-supervised algorithms in extremely low supervision settings. Given a dataset with few labeled samples, we first learn meaningful self-supervised, latent features for the data. Second, a label propagation algorithm propagates the known labels on the unsupervised features, effectively labeling the full dataset in an automatic fashion. Third, we select a subset of correctly labeled (reliable) samples using a label noise detection algorithm. Finally, we train a semi-supervised algorithm on the extended subset. We show that the selection of the network architecture and the self-supervised algorithm are important factors to achieve successful label propagation and demonstrate that ReLaB substantially improves semi-supervised learning in scenarios of very limited supervision on CIFAR-10, CIFAR-100 and mini-ImageNet. We reach average error rates of 22.34\boldsymbol{22.34} with 1 random labeled sample per class on CIFAR-10 and lower this error to 8.46\boldsymbol{8.46} when the labeled sample in each class is highly representative. Our work is fully reproducible: https://github.com/PaulAlbert31/ReLaB.Comment: 10 pages, 3 figure

    Towards Robust Learning with Different Label Noise Distributions

    Get PDF
    Noisy labels are an unavoidable consequence of labeling processes and detecting them is an important step towards preventing performance degradations in Convolutional Neural Networks. Discarding noisy labels avoids a harmful memorization, while the associated image content can still be exploited in a semi-supervised learning (SSL) setup. Clean samples are usually identified using the small loss trick, i.e. they exhibit a low loss. However, we show that different noise distributions make the application of this trick less straightforward and propose to continuously relabel all images to reveal a discriminative loss against multiple distributions. SSL is then applied twice, once to improve the clean-noisy detection and again for training the final model. We design an experimental setup based on ImageNet32/64 for better understanding the consequences of representation learning with differing label noise distributions and find that non-uniform out-of-distribution noise better resembles real-world noise and that in most cases intermediate features are not affected by label noise corruption. Experiments in CIFAR-10/100, ImageNet32/64 and WebVision (real-world noise) demonstrate that the proposed label noise Distribution Robust Pseudo-Labeling (DRPL) approach gives substantial improvements over recent state-of-the-art. Code is available at https://git.io/JJ0PV

    Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning

    Get PDF
    Semi-supervised learning, i.e. jointly learning from labeled and unlabeled samples, is an active research topic due to its key role on relaxing human supervision. In the context of image classification, recent advances to learn from unlabeled samples are mainly focused on consistency regularization methods that encourage invariant predictions for different perturbations of unlabeled samples. We, conversely, propose to learn from unlabeled data by generating soft pseudo-labels using the network predictions. We show that a naive pseudo-labeling overfits to incorrect pseudo-labels due to the so-called confirmation bias and demonstrate that mixup augmentation and setting a minimum number of labeled samples per mini-batch are effective regularization techniques for reducing it. The proposed approach achieves state-of-the-art results in CIFAR-10/100, SVHN, and Mini-ImageNet despite being much simpler than other methods. These results demonstrate that pseudo-labeling alone can outperform consistency regularization methods, while the opposite was supposed in previous work. Source code is available at https://git.io/fjQsC

    Roll Calibration for CryoSat-2: a comprehensive approach

    Get PDF
    International audienceCryoSat-2 is the first satellite mission carrying a high pulse repetition frequency radar altimeter with interferometric capability on board. Across track interferometry allows the angle to the point of closest approach to be determined by combining echoes received by two antennas and knowledge of their orientation. Accurate information of the platform mispointing angles, in particular of the roll, is crucial to determine the angle of arrival in the across-track direction with sufficient accuracy. As a consequence, different methods were designed in the CryoSat-2 calibration plan in order to estimate interferometer performance along with the mission and to assess the roll’s contribution to the accuracy of the angle of arrival. In this paper, we present the comprehensive approach used in the CryoSat-2 Mission to calibrate the roll mispointing angle, combining analysis from external calibration of both man-made targets, i.e., transponder and natural targets. The roll calibration approach for CryoSat-2 is proven to guarantee that the interferometric measurements are exceeding the expected performance

    Unsupervised label noise modeling and loss correction

    Get PDF
    Despite being robust to small amounts of label noise, convolutional neural networks trained with stochastic gradient methods have been shown to easily fit random labels. When there are a mixture of correct and mislabelled targets, networks tend to fit the former before the latter. This suggests using a suitable two-component mixture model as an unsupervised generative model of sample loss values during training to allow online estimation of the probability that a sample is mislabelled. Specifically, we propose a beta mixture to estimate this probability and correct the loss by relying on the network prediction (the so-called bootstrapping loss). We further adapt mixup augmentation to drive our approach a step further. Experiments on CIFAR-10/100 and TinyImageNet demonstrate a robustness to label noise that substantially outperforms recent state-of-the-art. Source code is available at https://git.io/fjsvE and Appendix at https://arxiv.org/abs/1904.11238
    corecore