4,322 research outputs found

    Solubility behaviour, crystallisation kinetics and pour point : a comparison of linear alkane and triacyl glyceride solute/solvent mixtures

    Get PDF
    Mixtures of either a hydrocarbon wax in a hydrocarbon solvent or a long chain triacyl glyceride (TAG) in a TAG solvent show complex solubility boundary temperature hysteresis and precipitated crystal network formation leading to gelation. For these industrially-important systems, we show how the equilibrium solubility and its hysteresis, crystallisation kinetics and pour point temperature vary with solute concentration for representative examples of both hydrocarbon (n-tetracosane (C24) solute in n-heptane (C7) solvent) and TAG (tristearin (SSS) solute in tricaprylin (CCC) solvent) mixtures. The behaviour is modelled with good accuracy; thereby providing a useful aid to formulation and process optimisation

    Advanced content-based semantic scene analysis and information retrieval: the SCHEMA project

    Get PDF
    The aim of the SCHEMA Network of Excellence is to bring together a critical mass of universities, research centers, industrial partners and end users, in order to design a reference system for content-based semantic scene analysis, interpretation and understanding. Relevant research areas include: content-based multimedia analysis and automatic annotation of semantic multimedia content, combined textual and multimedia information retrieval, semantic -web, MPEG-7 and MPEG-21 standards, user interfaces and human factors. In this paper, recent advances in content-based analysis, indexing and retrieval of digital media within the SCHEMA Network are presented. These advances will be integrated in the SCHEMA module-based, expandable reference system

    Vidal Box, C. La Peninsula de El Grove

    Get PDF

    Sobre l'existència del nivell dels "Calymenes" al Baix Pirineu

    Get PDF

    How may tropical cyclones change in a warmer climate?

    Get PDF
    Tropical Cyclones (TC) under different climate conditions in the Northern Hemisphere have been investigated with the Max Planck Institute (MPI) coupled (ECHAM5/MPIOM) and atmosphere (ECHAM5) climate models. The intensity and size of the TC depend crucially on resolution with higher wind speed and smaller scales at the higher resolutions. The typical size of the TC is reduced by a factor of 2.3 from T63 to T319 using the distance of the maximum wind speed from the centre of the storm as a measure. The full three dimensional structure of the storms becomes increasingly more realistic as the resolution is increased. For the T63 resolution, three ensemble runs are explored for the period 1860 until 2100 using the IPCC SRES scenario A1B and evaluated for three 30 year periods at the end of the 19th, 20th and 21st century, respectively. While there is no significant change between the 19th and the 20th century, there is a considerable reduction in the number of the TC by some 20% in the 21st century, but no change in the number of the more intense storms. Reduction in the number of storms occurs in all regions. A single additional experiment at T213 resolution was run for the two latter 30-year periods. The T213 is an atmospheric only experiment using the transient Sea Surface Temperatures (SST) of the T63 resolution experiment. Also in this case, there is a reduction by some 10% in the number of simulated TC in the 21st century compared to the 20th century but a marked increase in the number of intense storms. The number of storms with maximum wind speeds greater than 50ms-1 increases by a third. Most of the intensification takes place in 2 the Eastern Pacific and in the Atlantic where also the number of storms more or less stays the same. We identify two competing processes effecting TC in a warmer climate. First, the increase in the static stability and the reduced vertical circulation is suggested to contribute to the reduction in the number of storms. Second, the increase in temperature and water vapor provide more energy for the storms so that when favorable conditions occur, the higher SST and higher specific humidity will contribute to more intense storms. As the maximum intensity depends crucially on resolution, this will require higher resolution to have its full effect. The distribution of storms between different regions does not, at first approximation, depend on the temperature itself but on the distribution of the SST anomalies and their influence on the atmospheric circulation. Two additional transient experiments at T319 resolution where run for 20 years at the end of the 20th and 21st century, respectively using the same conditions as in the T213 experiments. The results are consistent with the T213 study. The total number of tropical cyclones were similar to the T213 experiment but were generally more intense. The change from the 20th to the 21st century was also similar with fewer TC in total but with more intense cyclones

    Improving Spatial Codification in Semantic Segmentation

    Get PDF
    This paper explores novel approaches for improving the spatial codification for the pooling of local descriptors to solve the semantic segmentation problem. We propose to partition the image into three regions for each object to be described: Figure, Border and Ground. This partition aims at minimizing the influence of the image context on the object description and vice versa by introducing an intermediate zone around the object contour. Furthermore, we also propose a richer visual descriptor of the object by applying a Spatial Pyramid over the Figure region. Two novel Spatial Pyramid configurations are explored: Cartesian-based and crown-based Spatial Pyramids. We test these approaches with state-of-the-art techniques and show that they improve the Figure-Ground based pooling in the Pascal VOC 2011 and 2012 semantic segmentation challenges.Comment: Paper accepted at the IEEE International Conference on Image Processing, ICIP 2015. Quebec City, 27-30 September. Project page: https://imatge.upc.edu/web/publications/improving-spatial-codification-semantic-segmentatio

    Simple vs complex temporal recurrences for video saliency prediction

    Get PDF
    This paper investigates modifying an existing neural network architecture for static saliency prediction using two types of recurrences that integrate information from the temporal domain. The first modification is the addition of a ConvLSTM within the architecture, while the second is a conceptually simple exponential moving average of an internal convolutional state. We use weights pre-trained on the SALICON dataset and fine-tune our model on DHF1K. Our results show that both modifications achieve state-of-the-art results and produce similar saliency maps. Source code is available at https://git.io/fjPiB
    corecore