7,337 research outputs found
Bioinformática: formação acadêmica e plataformas com softwares e ferramentas.
bitstream/item/31228/1/doc-109.pd
Infrared Emission from the Radio Supernebula in NGC 5253: A Proto-Globular Cluster?
Hidden from optical view in the starburst region of the dwarf galaxy NGC 5253
lies an intense radio source with an unusual spectrum which could be
interpreted variously as nebular gas ionized by a young stellar cluster or
nonthermal emission from a radio supernova or an AGN. We have obtained 11.7 and
18.7 micron images of this region at the Keck Telescope and find that it is an
extremely strong mid-infrared emitter. The infrared to radio flux ratio rules
out a supernova and is consistent with an HII region excited by a dense cluster
of young stars. This "super nebula" provides at least 15% of the total
bolometric luminosity of the galaxy. Its excitation requires 10^5-10^6 stars,
giving it the total mass and size (1-2 pc diameter) of a globular cluster.
However, its high obscuration, small size, and high gas density all argue that
it is very young, no more than a few hundred thousand years old. This may be
the youngest globular cluster yet observed.Comment: 6 pages, 2 color figures, Submitted to the ApJL, Revised 4/6/01 based
on referee's comment
Understanding Link Dynamics in Wireless Sensor Networks with Dynamically Steerable Directional Antennas
Abstract. By radiating the power in the direction of choice, electronicallyswitched directional (ESD) antennas can reduce network contention and avoid packet loss. There exists some ESD antennas for wireless sensor networks, but so far researchers have mainly evaluated their directionality. There are no studies regarding the link dynamics of ESD antennas, in particular not for indoor deployments and other scenarios where nodes are not necessarily in line of sight. Our long-term experiments confirm that previous findings that have demonstrated the dependence of angleof-arrival on channel frequency also hold for directional transmissions with ESD antennas. This is important for the design of protocols for wireless sensor networks with ESD antennas: the best antenna direction, i.e., the direction that leads to the highest packet reception rate and signal strength at the receiver, is not stable but varies over time and with the selected IEEE 802.15.4 channel. As this requires protocols to incorporate some form of adaptation, we present an intentionally simple and yet efficient mechanism for selecting the best antenna direction at run-time with an energy overhead below 2 % compared to standard omni-directional transmissions.
Recommended from our members
Thermo- and Hydro-mechanical Processes along Faults during Rapid Slip
Field observations of maturely slipped faults show a generally broad zone of damage by cracking and granulation. Nevertheless, large shear deformation, and therefore heat generation, in individual earthquakes takes place with extreme localization to a zone <1–5 mm wide within a finely granulated fault core. Relevant fault weakening processes during large crustal events are therefore likely to be thermal. Further, given the porosity of the damage zones, it seems reasonable to assume groundwater presence. It is suggested that the two primary dynamic weak- ening mechanisms during seismic slip, both of which are expected to be active in at least the early phases of nearly all crustal events, are then as follows: (1) Flash heating at highly stressed frictional micro-contacts, and (2) Thermal pressurization of fault-zone pore fluid. Both have characteristics which promote extreme localization of shear. Macroscopic fault melting will occur only in cases for which those processes, or others which may sometimes become active at large enough slip (e.g., thermal decomposition, silica gelation), have not sufficiently reduced heat generation and thus limited temperature rise. Spontaneous dynamic rupture modeling, using procedures that embody mechanisms (1) and (2), shows how faults can be statically strong yet dynamically weak, and oper- ate under low overall driving stress, in a manner that generates negligible heat and meets major seismic constraints on slip, stress drop, and self-healing rupture mode.Earth and Planetary SciencesEngineering and Applied Science
Pressure-induced polarization reversal in multiferroic
The low-temperature ferroelectric polarization of multiferroic is
completely reversed at a critical pressure of 10 kbar and the phase transition
from the incommensurate to the commensurate magnetic phase is induced by
pressures above 14 kbar. The high-pressure data correlate with thermal
expansion measurements indicating a significant lattice strain at the
low-temperature transition into the incommensurate phase. The results support
the exchange striction model for the ferroelectricity in multiferroic
compounds and they show the importance of magnetic frustration as
well as the spin-lattice coupling
Three-Dimensional Elastic Compatibility: Twinning in Martensites
We show how the St.Venant compatibility relations for strain in three
dimensions lead to twinning for the cubic to tetragonal transition in
martensitic materials within a Ginzburg-Landau model in terms of the six
components of the symmetric strain tensor. The compatibility constraints
generate an anisotropic long-range interaction in the order parameter
(deviatoric strain) components. In contrast to two dimensions, the free energy
is characterized by a "landscape" of competing metastable states. We find a
variety of textures, which result from the elastic frustration due to the
effects of compatibility. Our results are also applicable to structural phase
transitions in improper ferroelastics such as ferroelectrics and
magnetoelastics, where strain acts as a secondary order parameter
Optical extinction due to intrinsic structural variations of photonic crystals
Unavoidable variations in size and position of the building blocks of
photonic crystals cause light scattering and extinction of coherent beams. We
present a new model for both 2 and 3-dimensional photonic crystals that relates
the extinction length to the magnitude of the variations. The predicted lengths
agree well with our new experiments on high-quality opals and inverse opals,
and with literature data analyzed by us. As a result, control over photons is
limited to distances up to 50 lattice parameters (m) in
state-of-the-art structures, thereby impeding large-scale applications such as
integrated circuits. Conversely, scattering in photonic crystals may lead to
novel physics such as Anderson localization and non-classical diffusion.Comment: 10 pages, 3 figures. Changes include: added Lagendijk as author;
simplified and generalized the tex
Photometric Properties of Long-period Variables in the Large Magellanic Cloud
Approximately four thousand light curves of red variable stars in the LMC
were selected from the 2.3-years duration MOA database by a period analysis
using the Phase Dispersion Minimization method. Their optical features
(amplitudes, periodicities, position in CMD) were investigated. Stars with
large amplitues and high periodicities were distributed on the only one strip
amongst multiple structure on the LMC period-luminosity relation. In the CMD,
the five strips were located in the order of the period. The stars with
characterized light curves were also discussed.Comment: 8 pages, 5 figures, Proceeding of WS on Mass-Losing Pulsating Stars
and Their Circumstellar Matter, Sendai, Japa
Study on vibration and stability of functionally graded cylindrical shells subjected to hydrostatic pressure
Based on the Flügge’s shell theory, the vibration characteristics and stability of submerged
functionally graded (FG) cylindrical shell under hydrostatic pressure is examined. By means of conversion
switch on axial wave number, the coupled frequency of submerged FG cylindrical shell with various
boundary conditions is obtained, using wave propagation method and Newton method. Then the critical
pressure of FG cylindrical shells is given by applying linear fitting method. Results are compared to known
solutions, where these solutions exist. The natural frequency and critical pressure of FG cylindrical shell are illustrated. The effects of constituent materials, volume fraction, boundary condition and dimensions on the natural frequencies and critical pressures of submerged FG cylindrical shell are illustrated by examples
- …
