170 research outputs found

    Subacute ruminal acidosis reduces sperm quality in beef bulls

    Get PDF
    Breeding bulls are commonly fed high-energy diets, which may induce subacute ruminal acidosis (SARA). In this experiment, 8 Santa Gertrudis bulls (age 20 ± 6 mo) were used to evaluate the extent and duration of effects of SARA on semen quality and the associated changes in circulating hormones and metabolites. The bulls were relocated and fed in yards with unrestricted access to hay and daily individual concentrate feeding for 125 d before SARA challenge. Semen was collected and assessed at 14-d intervals before the challenge to ensure acclimatization and the attainment of a stable spermiogram. The challenge treatments consisted of either a single oral dose of oligofructose (OFF; 6.5 g/kg BW) or an equivalent sham dose of water (Control). Locomotion, behavior, respiratory rate, and cardiovascular and gastrointestinal function were intensively monitored during the 24-h challenge period. Rumen fluid samples were retained for VFA, ammonia, and lactate analysis. After the challenge, semen was then collected every third day for a period of 7 wk and then once weekly until 12 wk, with associated blood collection for FSH, testosterone, inhibin, and cortisol assay. Percent normal sperm decreased in bulls dosed with OFF after the challenge period (P < 0.05) and continued to remain lower on completion of the study at 88 d after challenge. There was a corresponding increase in sperm defects commencing from 16 d after challenge. These included proximal cytoplasmic droplets (P < 0.001), distal reflex midpieces (P = 0.01), and vacuole and teratoid heads (P < 0.001). Changes in semen quality after challenge were associated with lower serum testosterone (P < 0.001) and FSH (P < 0.05). Serum cortisol in OFF bulls tended to be greater (P = 0.07) at 7 d after challenge. This study shows that SARA challenge causes a reduction in sperm quality sufficient to preclude bulls from sale as single sire breeding animals 3 mo after the event occurred

    Effect of yeast culture on milk production and metabolic and reproductive performance of early lactation dairy cows

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The main objective of this study was to estimate the effect of supplementation with <it>Saccaromyces cerevisiae (SC</it>) (Yea-Sacc<sup>® </sup>1026) on milk production, metabolic parameters and the resumption of ovarian activity in early lactation dairy cows.</p> <p>Methods</p> <p>The experiment was conducted during 2005/2006 in a commercial tied-house farm with an average of 200 milking Estonian Holstein Friesian cows. The late pregnant multiparous cows (n = 46) were randomly divided into two groups; one group received 10 g yeast culture from two weeks before to 14 weeks after calving. The groups were fed a total mixed ration with silages and concentrates. Milk recording data and blood samples for plasma metabolites were taken. Resumption of luteal activity was determined using milk progesterone (P<sub>4</sub>) measurements. Uterine bacteriology and ovarian ultrasonography (US) were performed and body condition scores (BCS) and clinical disease occurrences were recorded. For analysis, the statistical software Stata 9.2 and R were used to compute Cox proportional hazard and linear mixed models.</p> <p>Results</p> <p>The average milk production per cow did not differ between the groups (32.7 ± 6.4 vs 30.7 ± 5.3 kg/day in the SC and control groups respectively), but the production of milk fat (<it>P </it>< 0.001) and milk protein (<it>P </it>< 0.001) were higher in the SC group. There was no effect of treatment on BCS. The analysis of energy-related metabolites in early lactation showed no significant differences between the groups. In both groups higher levels of β-hydroxybutyrate (BHB) appeared from days 14 to 28 after parturition and the concentration of non-esterfied fatty acid (NEFA) was higher from days 1–7 post partum (PP). According to US and P<sub>4 </sub>results, all cows in both groups ovulated during the experimental period. The resumption of ovarian activity (first ovulations) and time required for elimination of bacteria from the uterus did not differ between the groups.</p> <p>Conclusion</p> <p>Supplementation with SC had an effect on milk protein and fat production, but did not influence the milk yield. No effects on PP metabolic status, bacterial elimination from the uterus nor the resumption of ovarian activity were found.</p

    Metabolic Engineering of Cofactor F420 Production in Mycobacterium smegmatis

    Get PDF
    Cofactor F420 is a unique electron carrier in a number of microorganisms including Archaea and Mycobacteria. It has been shown that F420 has a direct and important role in archaeal energy metabolism whereas the role of F420 in mycobacterial metabolism has only begun to be uncovered in the last few years. It has been suggested that cofactor F420 has a role in the pathogenesis of M. tuberculosis, the causative agent of tuberculosis. In the absence of a commercial source for F420, M. smegmatis has previously been used to provide this cofactor for studies of the F420-dependent proteins from mycobacterial species. Three proteins have been shown to be involved in the F420 biosynthesis in Mycobacteria and three other proteins have been demonstrated to be involved in F420 metabolism. Here we report the over-expression of all of these proteins in M. smegmatis and testing of their importance for F420 production. The results indicate that co–expression of the F420 biosynthetic proteins can give rise to a much higher F420 production level. This was achieved by designing and preparing a new T7 promoter–based co-expression shuttle vector. A combination of co–expression of the F420 biosynthetic proteins and fine-tuning of the culture media has enabled us to achieve F420 production levels of up to 10 times higher compared with the wild type M. smegmatis strain. The high levels of the F420 produced in this study provide a suitable source of this cofactor for studies of F420-dependent proteins from other microorganisms and for possible biotechnological applications
    corecore