57 research outputs found

    Amyloid Beta Annular Protofibrils in Cell Processes and Synapses Accumulate with Aging and Alzheimer-Associated Genetic Modification

    Get PDF
    Amyloid β (Aβ) annular protofibrils (APFs) have been described where the structure is related to that of β barrel pore-forming bacterial toxins and exhibits cellular toxicity. To investigate the relationship of Aβ APFs to disease and their ultrastructural localization in brain tissue, we conducted a pre-embedding immunoelectron microscopic study using anti-annular protofibril antiserum. We examined brain tissues of young- and old-aged amyloid precursor protein transgenic mice (APP23), neprilysin knockout APP23 mice, and nontransgenic littermates. αAPF-immunoreactions tended to be found (1) on plasma membranes and vesicles inside of cell processes, but not on amyloid fibrils, (2) with higher density due to aging, APP transgene, and neprilysin deficiency, and (3) with higher positive rate at synaptic compartments in aged APP23, especially in neprilysin knockout APP23 mice. These findings imply that APFs are distinct from amyloid fibrils, interact with biological membranes, and might be related to synaptic dysfunction in Alzheimer model mouse brains

    Comprehensive behavioral phenotyping of calpastatin-knockout mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Calpastatin is an endogenous inhibitor of calpain, intracellular calcium-activated protease. It has been suggested to be involved in molecular mechanisms of long-term plasticity and excitotoxic pathways. However, functions of calpastatin in vivo are still largely unknown. To examine the physiological roles of calpastatin, we subjected calpastatin-knockout mice to a comprehensive behavioral test battery.</p> <p>Results</p> <p>Calpastatin-knockout mice showed decreased locomotor activity under stressful environments, and decreased acoustic startle response, but we observed no significant change in hippocampus-dependent memory function.</p> <p>Conclusion</p> <p>These results suggest that calpastatin is likely to be more closely associated with affective rather than cognitive aspects of brain function.</p

    Activity-dependent cleavage of dyskinesia-related proline-rich transmembrane protein 2 (PRRT2) by calpain in mouse primary cortical neurons

    Get PDF
    Mutations of PRRT2 (proline-rich transmembrane protein 2) cause several neurological disorders, represented by paroxysmal kinesigenic dyskinesia (PKD), which is characterized by attacks of involuntary movements triggered by sudden voluntary movements. PRRT2 is reported to suppress neuronal excitation, but it is unclear how the function of PRRT2 is modulated during neuronal excitation. We found that PRRT2 is processed to a 12 kDa carboxy-terminal fragment (12K-CTF) by calpain, a calcium-activated cysteine protease, in a neuronal activity-dependent manner, predominantly via NMDA receptors or voltage-gated calcium channels. Furthermore, we clarified that 12K-CTF is generated by sequential cleavages at Q220 and S244. The amino-terminal fragment (NTF) of PRRT2, which corresponds to PKD-related truncated mutants, is not detected, probably due to rapid cleavage at multiple positions. Given that 12K-CTF lacks most of the proline-rich domain, this cleavage might be involved in the activity-dependent enhancement of neuronal excitation perhaps through transient retraction of PRRT2\u27s function. Therefore, PRRT2 might serve as a buffer for neuronal excitation, and lack of this function in PKD patients might cause neuronal hyperexcitability in their motor circuits

    iPSC-Based Compound Screening and In Vitro Trials Identify a Synergistic Anti-amyloid β Combination for Alzheimer’s Disease

    Get PDF
    In the process of drug development, in vitro studies do not always adequately predict human-specific drug responsiveness in clinical trials. Here, we applied the advantage of human iPSC-derived neurons, which offer human-specific drug responsiveness, to screen and evaluate therapeutic candidates for Alzheimer’s disease (AD). Using AD patient neurons with nearly 100% purity from iPSCs, we established a robust and reproducible assay for amyloid β peptide (Aβ), a pathogenic molecule in AD, and screened a pharmaceutical compound library. We acquired 27 Aβ-lowering screen hits, prioritized hits by chemical structure-based clustering, and selected 6 leading compounds. Next, to maximize the anti-Aβ effect, we selected a synergistic combination of bromocriptine, cromolyn, and topiramate as an anti-Aβ cocktail. Finally, using neurons from familial and sporadic AD patients, we found that the cocktail showed a significant and potent anti-Aβ effect on patient cells. This human iPSC-based platform promises to be useful for AD drug development

    Aminophospholipids are signal-transducing TREM2 ligands on apoptotic cells

    Get PDF
    Variants of triggering receptor expressed on myeloid cells 2 (TREM2) are associated with an increased incidence of Alzheimer’s disease, as well as other neurodegenerative disorders. Using a newly developed,highly sensitive reporter cell model, consisting of Jurkat T cells stably overexpressing a reporter gene and a gene encoding TREM2DAP12 fusion protein, we show here that TREM2-dependent signal transduction in response to apoptotic Neuro2a cells is mediated by aminophospholipid ligands,phosphatidylserine and phosphatidylethanolamine, which are not exposed on the intact cell surface, but become exposed upon apoptosis. We also show that signal-transducing TREM2 ligands different from aminophospholipids, which appear to be derived from neurons, might be present in membrane fractions of mouse cerebral cortex. These results may suggest that TREM2 regulates microglial function by transducing intracellular signals from aminophospholipids on apoptotic cells, as well as unidentified ligands in the membranes of the cerebral cortex

    Genetic and Phenotypic Landscape of PRPH2-Associated Retinal Dystrophy in Japan

    Get PDF
    Peripherin-2 (PRPH2) is one of the causative genes of inherited retinal dystrophy. While the gene is relatively common in Caucasians, reports from Asian ethnicities are limited. In the present study, we report 40 Japanese patients from 30 families with PRPH2-associated retinal dystrophy. We identified 17 distinct pathogenic or likely pathogenic variants using next-generation sequencing. Variants p.R142W and p.V200E were relatively common in the cohort. The age of onset was generally in the 40’s; however, some patients had earlier onset (age: 5 years). Visual acuity of the patients ranged from hand motion to 1.5 (Snellen equivalent 20/13). The patients showed variable phenotypes such as retinitis pigmentosa, cone-rod dystrophy, and macular dystrophy. Additionally, intrafamilial phenotypic variability was observed. Choroidal neovascularization was observed in three eyes of two patients with retinitis pigmentosa. The results demonstrate the genotypic and phenotypic variations of the disease in the Asian cohort

    An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer\u27s disease

    Get PDF
    The β-site amyloid precursor protein cleaving enzyme-1 (BACE1), an essential protease for the generation of amyloid-β (Aβ) peptide, is a major drug target for Alzheimer\u27s disease (AD). However, there is a concern that inhibiting BACE1 could also affect several physiological functions. Here, we show that BACE1 is modified with bisecting N-acetylglucosamine (GlcNAc), a sugar modification highly expressed in brain, and demonstrate that AD patients have higher levels of bisecting GlcNAc on BACE1. Analysis of knockout mice lacking the biosynthetic enzyme for bisecting GlcNAc, GnT-III (Mgat3), revealed that cleavage of Aβ-precursor protein (APP) by BACE1 is reduced in these mice, resulting in a decrease in Aβ plaques and improved cognitive function. The lack of this modification directs BACE1 to late endosomes/lysosomes where it is less colocalized with APP, leading to accelerated lysosomal degradation. Notably, other BACE1 substrates, CHL1 and contactin-2, are normally cleaved in GnT-III-deficient mice, suggesting that the effect of bisecting GlcNAc on BACE1 is selective to APP. Considering that GnT-III-deficient mice remain healthy, GnT-III may be a novel and promising drug target for AD therapeutics

    Phamacogenomics of Clozapine-Induced Agranulocytosis

    Get PDF
    Background: Clozapine-induced agranulocytosis (CIA)/clozapine-induced granulocytopenia (CIG) (CIAG) is a life-threatening event for schizophrenic subjects treated with clozapine. Methods: To examine the genetic factor for CIAG, a genome-wide pharmacogenomic analysis was conducted using 50 subjects with CIAG and 2905 control subjects. Results: We identified a significant association in the human leukocyte antigen (HLA) region (rs1800625, p = 3.46 × 10−9, odds ratio [OR] = 3.8); therefore, subsequent HLA typing was performed. We detected a significant association of HLA-B*59:01 with CIAG (p = 3.81 × 10−8, OR = 10.7) and confirmed this association by comparing with an independent clozapine-tolerant control group (n = 380, p = 2.97 × 10−5, OR = 6.3). As we observed that the OR of CIA (OR: 9.3~15.8) was approximately double that in CIG (OR: 4.4~7.4), we hypothesized that the CIG subjects were a mixed population of those who potentially would develop CIA and those who would not develop CIA (non-CIA). This hypothesis allowed the proportion of the CIG who were non-CIA to be calculated, enabling us to estimate the positive predictive value of the nonrisk allele on non-CIA in CIG subjects. Assuming this model, we estimated that 1) ~50% of CIG subjects would be non-CIA; and 2) ~60% of the CIG subjects without the risk allele would be non-CIA and therefore not expected to develop CIA. Conclusions: Our results suggest that HLA-B*59:01 is a risk factor for CIAG in the Japanese population. Furthermore, if our model is true, the results suggest that rechallenging certain CIG subjects with clozapine may not be always contraindicated

    Anti-Aβ Drug Screening Platform Using Human iPS Cell-Derived Neurons for the Treatment of Alzheimer's Disease

    Get PDF
    Background:Alzheimer's disease (AD) is a neurodegenerative disorder that causes progressive memory and cognitive decline during middle to late adult life. The AD brain is characterized by deposition of amyloid β peptide (Aβ), which is produced from amyloid precursor protein by β- and γ-secretase (presenilin complex)-mediated sequential cleavage. Induced pluripotent stem (iPS) cells potentially provide an opportunity to generate a human cell-based model of AD that would be crucial for drug discovery as well as for investigating mechanisms of the disease. Methodology/Principal Findings:We differentiated human iPS (hiPS) cells into neuronal cells expressing the forebrain marker, Foxg1, and the neocortical markers, Cux1, Satb2, Ctip2, and Tbr1. The iPS cell-derived neuronal cells also expressed amyloid precursor protein, β-secretase, and γ-secretase components, and were capable of secreting Aβ into the conditioned media. Aβ production was inhibited by β-secretase inhibitor, γ-secretase inhibitor (GSI), and an NSAID; however, there were different susceptibilities to all three drugs between early and late differentiation stages. At the early differentiation stage, GSI treatment caused a fast increase at lower dose (Aβ surge) and drastic decline of Aβ production. Conclusions/Significance:These results indicate that the hiPS cell-derived neuronal cells express functional β- and γ-secretases involved in Aβ production; however, anti-Aβ drug screening using these hiPS cell-derived neuronal cells requires sufficient neuronal differentiation

    Potent amyloidogenicity and pathogenicity of Aβ43.

    Get PDF
    The amyloid-β peptide Aβ42 is known to be a primary amyloidogenic and pathogenic agent in Alzheimer\u27s disease. However, the role of Aβ43, which is found just as frequently in the brains of affected individuals, remains unresolved. We generated knock-in mice containing a pathogenic presenilin-1 R278I mutation that causes overproduction of Aβ43. Homozygosity was embryonic lethal, indicating that the mutation involves a loss of function. Crossing amyloid precursor protein transgenic mice with heterozygous mutant mice resulted in elevated Aβ43, impairment of short-term memory and acceleration of amyloid-β pathology, which accompanied pronounced accumulation of Aβ43 in plaque cores similar in biochemical composition to those observed in the brains of affected individuals. Consistently, Aβ43 showed a higher propensity to aggregate and was more neurotoxic than Aβ42. Other pathogenic presenilin mutations also caused overproduction of Aβ43 in a manner correlating with Aβ42 and with the age of disease onset. These findings indicate that Aβ43, an overlooked species, is potently amyloidogenic, neurotoxic and abundant in vivo
    corecore