48 research outputs found
Nonintegrable Interaction of Ion-Acoustic and Electromagnetic Waves in a Plasma
In this paper we re-examine the one-dimensional interaction of
electromagnetic and ion acoustic waves in a plasma. Our model is similar to one
solved by Rao et al. (Phys. Fluids, vol. 26, 2488 (1983)) under a number of
analytical approximations. Here we perform a numerical investigation to examine
the stability of the model. We find that for slightly over dense plasmas, the
propagation of stable solitary modes can occur in an adiabatic regime where the
ion acoustic electric field potential is enslaved to the electromagnetic field
of a laser. But if the laser intensity or plasma density increases or the laser
frequency decreases, the adiabatic regime loses stability via a transition to
chaos. New asymptotic states are attained when the adiabatic regime no longer
exists. In these new states, the plasma becomes rarefied, and the laser field
tends to behave like a vacuum field.Comment: 19 pages, REVTeX, 6 ps figures, accepted for publication in Phys.
Rev.
Whole genome analysis of a schistosomiasis-transmitting freshwater snail
Biomphalaria snails are instrumental in transmission of the human blood fluke Schistosoma mansoni. With the World Health Organization's goal to eliminate schistosomiasis as a global health problem by 2025, there is now renewed emphasis on snail control. Here, we characterize the genome of Biomphalaria glabrata, a lophotrochozoan protostome, and provide timely and important information on snail biology. We describe aspects of phero-perception, stress responses, immune function and regulation of gene expression that support the persistence of B. glabrata in the field and may define this species as a suitable snail host for S. mansoni. We identify several potential targets for developing novel control measures aimed at reducing snail-mediated transmission of schistosomiasis
General Overview of Black Hole Accretion Theory
I provide a broad overview of the basic theoretical paradigms of black hole
accretion flows. Models that make contact with observations continue to be
mostly based on the four decade old alpha stress prescription of Shakura &
Sunyaev (1973), and I discuss the properties of both radiatively efficient and
inefficient models, including their local properties, their expected stability
to secular perturbations, and how they might be tied together in global flow
geometries. The alpha stress is a prescription for turbulence, for which the
only existing plausible candidate is that which develops from the
magnetorotational instability (MRI). I therefore also review what is currently
known about the local properties of such turbulence, and the physical issues
that have been elucidated and that remain uncertain that are relevant for the
various alpha-based black hole accretion flow models.Comment: To be published in Space Science Reviews and as hard cover in the
Space Sciences Series of ISSI: The Physics of Accretion on to Black Holes
(Springer Publisher
Mass calibration of DES Year-3 clusters via SPT-3G CMB cluster lensing
We measure the stacked lensing signal in the direction of galaxy clusters in the Dark Energy Survey Year 3 (DES Y3) redMaPPer sample, using cosmic microwave background (CMB) temperature data from SPT-3G, the third-generation CMB camera on the South Pole Telescope (SPT). Here, we estimate the lensing signal using temperature maps constructed from the initial 2 years of data from the SPT-3G 'Main' survey, covering 1500 deg2 of the Southern sky. We then use this lensing signal as a proxy for the mean cluster mass of the DES sample. The thermal Sunyaev-Zel'dovich (tSZ) signal, which can contaminate the lensing signal if not addressed, is isolated and removed from the data before obtaining the mass measurement. In this work, we employ three versions of the redMaPPer catalogue: a Flux-Limited sample containing 8865 clusters, a Volume-Limited sample with 5391 clusters, and a Volume&Redshift-Limited sample with 4450 clusters. For the three samples, we detect the CMB lensing signal at a significance of 12.4σ, 10.5σ and 10.2σ and find the mean cluster masses to be M 200m = 1.66±0.13 [stat.]± 0.03 [sys.], 1.97±0.18 [stat.]± 0.05 [sys.], and 2.11±0.20 [stat.]± 0.05 [sys.]×1014 M⊙, respectively. This is a factor of ∼ 2 improvement relative to the precision of measurements with previous generations of SPT surveys and the most constraining cluster mass measurements using CMB cluster lensing to date. Overall, we find no significant tensions between our results and masses given by redMaPPer mass-richness scaling relations of previous works, which were calibrated using CMB cluster lensing, optical weak lensing, and velocity dispersion measurements from various combinations of DES, SDSS and Planck data. We then divide our sample into 3 redshift and 3 richness bins, finding no significant discrepancies with optical weak-lensing calibrated masses in these bins. We forecast a 5.7% constraint on the mean cluster mass of the DES Y3 sample with the complete SPT-3G surveys when using both temperature and polarization data and including an additional ∼ 1400 deg2 of observations from the 'Extended' SPT-3G survey