1,767 research outputs found

    a possible use of smart thermography for the control of gfrp composite laminate

    Get PDF
    Abstract The development of techniques able to check the structural health of a wind blade is very important. An innovative and promising technique applicable at this aim is the SMArt thermography. It exploits the electro-thermal properties of SMArt composites, in order to detect the structural flaws using an embedded source. Such a system enables a built-in, fast, cost-effective and in-depth assessment of the structural damage as it overcomes the limitations of standard thermography. With the aim for developing a reliable diagnostic method based on SMArt thermography, a preliminary numerical model was implemented in order to simulate the heating and the subsequent cooling of a GFRP composite laminate with embedded SMA wires. The heat source was represented by the Joule effect originated in the SMA wires and supplied as power density. The analysis of the resulting thermal maps at different values of power density provided the optimal levels of current amplitude and period to be applied in the subsequent experimental applications

    The Cochlear Tuning Curve

    Get PDF
    The tuning curve of the cochlea measures how large an input is required to elicit a given output level as a function of the frequency. It is a fundamental object of auditory theory, for it summarizes how to infer what a sound was on the basis of the cochlear output. A simple model is presented showing that only two elements are sufficient for establishing the cochlear tuning curve: a broadly tuned traveling wave, moving unidirectionally from high to low frequencies, and a set of mechanosensors poised at the threshold of an oscillatory (Hopf) instability. These two components suffice to generate the various frequency-response regimes which are needed for a cochlear tuning curve with a high slope

    Large Loops of Magnetic Current and Confinement in Four Dimensional U(1)U(1) Lattice Gauge Theory

    Full text link
    We calculate the heavy quark potential from the magnetic current due to monopoles in four dimensional U(1)U(1) lattice gauge theory. The magnetic current is found from link angle configurations using the DeGrand-Toussaint identification method. The link angle configurations are generated in a cosine action simulation on a 24424^4 lattice. The magnetic current is resolved into large loops which wrap around the lattice and simple loops which do not. Wrapping loops are found only in the confined phase. It is shown that the long range part of the heavy quark potential, in particular the string tension, can be calculated solely from the large, wrapping loops of magnetic current.Comment: 15 pages (Latex file plus 3 postscript files appended), Univeristy of Illinois Preprint ILL-(TH)-93-\#1

    La stereotomia in Sicilia e nel Mediterraneo

    Get PDF
    Il volume raccoglie le riflessioni di un gruppo di ricerca dell'Università degli Studi di Palermo, seguite a due anni di indagini sul tema della stereotomia nel Mediterraneo centrale. Il libro contiene un saggio del curatore sul tema della costruzione di volte e cupole in pietra tra XV e XVI secolo, che ha l'obiettivo non secondario di sgretolare alcuni luoghi comuni che caratterizzano la produzione architettonica del Meridione d'Italia (persistenza, fatalismo, passiva elaborazione di modelli inventati altrove). La seconda parte riunisce considerazioni e informazioni su una serie di esempi di temi stereotomici (archi, volte, scale), legati alla produzione siciliana di età moderna. Concludono il volume un contributo legato ai problemi metodologici che comportano gli strumenti innovativi di rilevamento e restituzione di manufatti realizzati in pietra a vista e una descrizione dell'allestimento del museo della stereotomia nel palazzo La Rocca a Ragusa Ibl

    optimization and comparison of ultrasonic techniques for ndt control of composite material elements

    Get PDF
    Abstract This work contains an overview of innovative procedures related to the optimization of non-destructive control ultrasonic techniques for defect investigation on composite plates. The inspection procedure improvement allows developing ideal ultrasonic setup and methods, giving the operator appropriate criteria and guidelines in terms of equipment, material and control procedures. Ultrasonic inspections are conducted on different GFRP laminates with artificial defects; tests are improved using special parts designed for probe positioning and contact conditions on inspected components. The data processing of UT procedures allows comparing detection sensitivity of different probe frequencies and plate material behavior. Contact ultrasonic method presents best results for GFRP plates using 1 MHz Olympus A103S probe, detecting small defects with maximum signal amplitudes. Finally, a statistical study is performed for repeatability demonstration of UT inspections

    damage investigation of aeronautical cfrp laminates under bearing tests

    Get PDF
    Abstract The use of mechanical fasteners is still main assembling method for CFRP sub-structures in aircrafts and helicopters. However, this type of joint introduces complex stress field in the hole surroundings producing failures risk. In this work, a progressive damage 3D model of the riveted joint has been implemented to predict the residual strength and compliance after first damage signs and reproduce the final failure of composite joints under tensile test. Two 3D FEM Models were used and results are compared to experimental tests. The junction stiffness under load was evaluated and preliminary analysis shows both the coefficient of friction and preload induce not significant alteration of the composite joint behaviour. On refined model, a 3D Hashin-type failure criterion was used to analyze damage of matrix and fibers, beginning in the hole where contact conditions with the bolt pin and head are more severe and is evenly distributed in various plies, leading to final rupture of second or third one. Successively, delaminations were introduced with cohesive model, since is considered to produce reliable results, because the initial compression collapse in critical layers in contact with rivet is proved to affect shear and compression load transfer to other layers, giving rise to localized internal delaminations, propagating successively in width

    A semi-automatic methodology for tire’s wear evaluation

    Get PDF
    In this work, the authors aim at developing a reliable and fast methodology to evaluate the wear evolution in tire starting from a complete optical 3D scanning. Starting from a data cloud, a semi-automatic methodology was implemented in MATLAB to extract mean tread radial profiles in correspondence of the desired angular position of the tire. These profiles could be numerically evaluated to establish the presence of irregular wear and the characteristic parameter of the groove depth. The reliability and the robustness of this methodology was firstly tested by applying it to several synthetic case studies modeled in CATIA V5®, where ovalization and presence of defects were also simulated. The groove depth was determined with an error lower than 1% for the ideal model, while the introduction of ovalization and defects leaded to an error of 2.6% in the worst condition. In a second time, the methodology has been successfully applied to experimental measurements carried out in two different wear life of the tire, allowing the tracking of the wear phenomena through the evaluation of the progressive lowering of tread radial profiles

    Numerical analysis of heat conduction problems on 3D general-shaped domains by means of a RBF Collocation Meshless Method

    Get PDF
    A Collocation Meshless Method based on Radial Basis Function (RBF) interpolation is employed to solve steady state heat conduction problems on 3D domains of arbitrary shape. The set of points required by the numerical method is generated through a novel and simple technique which automatically produces a distribution with variable point density and which adapts to each specific geometry. Numerical results are systematically compared to the corresponding analytical solutions considering several combinations of parameters; convergence tests have also been carried out. The favorable properties that will be outlined suggest that this approach can be an effective and flexible tool in the numerical simulation of heat conduction problems with complex 3D geometries

    A lattice study of the strangeness content of the nucleon

    Full text link
    We determine the quark contributions to the nucleon spin Delta s, Delta u and Delta d as well as their contributions to the nucleon mass, the sigma-terms. This is done by computing both, the quark line connected and disconnected contributions to the respective matrix elements, using the non-perturbatively improved Sheikholeslami-Wohlert Wilson Fermionic action. We simulate n_F=2 mass degenerate sea quarks with a pion mass of about 285 MeV and a lattice spacing a = 0.073 fm. The renormalization of the matrix elements involves mixing between contributions from different quark flavours. The pion-nucleon sigma-term is extrapolated to physical quark masses exploiting the sea quark mass dependence of the nucleon mass. We obtain the renormalized value sigma_{piN}=38(12) MeV at the physical point and the strangeness fraction f_{Ts}=sigma_s/m_N=0.012(14)(+10-3) at our larger than physical sea quark mass. For the strangeness contribution to the nucleon spin we obtain in the MSbar scheme at the renormalization scale of 2.71 GeV Delta s = -0.020(10)(2).Comment: 7 pages, 3 figures, Invited Talk at the 33rd Erice School on Nuclear Physics, Erice, 16-24 September 2011, Ital
    corecore