20 research outputs found

    Solving the conundrum of intra-specific variation in metabolic rate: A multidisciplinary conceptual and methodological toolkit

    Get PDF
    Researchers from diverse disciplines, including organismal and cellular physiology, sports science, human nutrition, evolution and ecology, have sought to understand the causes and consequences of the surprising variation in metabolic rate found among and within individual animals of the same species. Research in this area has been hampered by differences in approach, terminology and methodology, and the context in which measurements are made. Recent advances provide important opportunities to identify and address the key questions in the field. By bringing together researchers from different areas of biology and biomedicine, we describe and evaluate these developments and the insights they could yield, highlighting the need for more standardisation across disciplines. We conclude with a list of important questions that can now be addressed by developing a common conceptual and methodological toolkit for studies on metabolic variation in animals

    Intrauterine Growth Retarded Progeny of Pregnant Sows Fed High Protein:Low Carbohydrate Diet Is Related to Metabolic Energy Deficit

    Get PDF
    High and low protein diets fed to pregnant adolescent sows led to intrauterine growth retardation (IUGR). To explore underlying mechanisms, sow plasma metabolite and hormone concentrations were analyzed during different pregnancy stages and correlated with litter weight (LW) at birth, sow body weight and back fat thickness. Sows were fed diets with low (6.5%, LP), adequate (12.1%, AP), and high (30%, HP) protein levels, made isoenergetic by adjusted carbohydrate content. At −5, 24, 66, and 108 days post coitum (dpc) fasted blood was collected. At 92 dpc, diurnal metabolic profiles were determined. Fasted serum urea and plasma glucagon were higher due to the HP diet. High density lipoprotein cholesterol (HDLC), %HDLC and cortisol were reduced in HP compared with AP sows. Lowest concentrations were observed for serum urea and protein, plasma insulin-like growth factor-I, low density lipoprotein cholesterol, and progesterone in LP compared with AP and HP sows. Fasted plasma glucose, insulin and leptin concentrations were unchanged. Diurnal metabolic profiles showed lower glucose in HP sows whereas non-esterified fatty acids (NEFA) concentrations were higher in HP compared with AP and LP sows. In HP and LP sows, urea concentrations were 300% and 60% of AP sows, respectively. Plasma total cholesterol was higher in LP than in AP and HP sows. In AP sows, LW correlated positively with insulin and insulin/glucose and negatively with glucagon/insulin at 66 dpc, whereas in HP sows LW associated positively with NEFA. In conclusion, IUGR in sows fed high protein∶low carbohydrate diet was probably due to glucose and energy deficit whereas in sows with low protein∶high carbohydrate diet it was possibly a response to a deficit of indispensable amino acids which impaired lipoprotein metabolism and favored maternal lipid disposal

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Short-term infusion of a fish oil-based lipid emulsion modulates fatty acid status, but not immune function or (anti)oxidant balance: a randomized cross-over study

    No full text
    Background and aims: Studies suggest clinical benefits of parenteral fish oil (FO), rich in n-3 polyunsaturated fatty acids (PUFAs), over soyabean oil (SO), rich in n-6 PUFAs, in patients with pro-inflammatory conditions such as sepsis and trauma. Because the mechanisms behind these observations remain unclear, the present study explored the effects of intravenous infusion of FO and SO on fatty acid incorporation, immune functions and (anti)oxidant balance in healthy human volunteers.Methods: Saline, a SO emulsion and a FO emulsion were administered for one hour on three consecutive days at a rate of 0·2 g/kg BW/h to eight subjects in a randomized cross-over design with a 3-week interval between treatments. Plasma phospholipid and peripheral blood mononuclear cell (PBMC) fatty acid compositions, and leucocyte counts and functions were assessed prior to the first infusion (T = 0, baseline) and 1 day (T = 4, early effects) and 8 days (T = 11, late effects) after the third infusion.Results: Fish oil infusion significantly increased n-3 PUFA proportions and decreased n-6 PUFA proportions in plasma phospholipids and PBMCs. There were no differences in immune functions or (anti)oxidant balance between treatments at any time.Conclusions:?The present lipid infusion protocol appears to be safe and well tolerated and provides significant incorporation of n-3 PUFAs into plasma phospholipids and PBMCs. In the absence of overt inflammation, no direct effects of FO were observed on immune function or (anti)oxidant balance. This model may be useful to evaluate effects of parenteral lipids in other settings, for example in individuals displaying an inflammatory state

    Altering meal timing to improve cognitive performance during simulated nightshifts

    No full text
    Altering meal timing could improve cognition, alertness, and thus safety during the nightshift. This study investigated the differential impact of consuming a meal, snack, or not eating during the nightshift on cognitive performance (ANZCTR12615001107516). 39 healthy participants (59% male, age mean±SD: 24.5 ± 5.0y) completed a 7-day laboratory study and underwent four simulated nightshifts. Participants were randomly allocated to: Meal at Night (MN; n= 12), Snack at Night (SN; n = 13) or No Eating at Night (NE; n = 14). At 00:30 h, MN consumed a meal and SN consumed a snack (30% and 10% of 24 h energy intake respectively). NE did not eat during the nightshift. Macronutrient intake was constant across conditions. At 20:00 h, 22:30 h, 01:30 h, and 04:00 h, participants completed the 3-min Psychomotor Vigilance Task (PVT-B), 40-min driving simulator, post-drive PVT-B, subjective sleepiness scale, 2-choice Reaction Time task, and Running Memory task. Objective sleep was recorded for each of the day sleeps using Actigraphy and for the third day sleep, Polysomnography was used. Performance was compared between conditions using mixed model analyses. Significant two-way interactions were found. At 04:00 h, SN displayed increased time spent in the safe zone (p  355 ms; p < .001), and reaction time on the 2-choice reaction time task (p < .001) and running memory task (p < .001) compared to MN and NE. MN reported greater subjective sleepiness at 04:00 h (p < .001) compared to SN and NE. There was no difference in objective sleep between eating conditions. Eating a large meal during the nightshift impairs cognitive performance and sleepiness above the effects of time of night alone. For improved performance, shiftworkers should opt for a snack at night

    Hypomorphic function and somatic reversion of DOCK8 cause combined immunodeficiency without hyper IgE

    Get PDF
    Highlights: Whole exome sequencing identified the underlying defect in a patient with combined immunodeficiency.A novel compound heterozygous DOCK8 mutation was identified.Expression of a truncated DOCK8 protein with hypomorphic function was identified.Somatic reversion of DOCK8 mainly in T cells was identified.DOCK8 deficiency may present without severe viral infections and increased serum IgE levels.Abstract: Loss of function mutations in DOCK8 are linked to hyper-IgE syndrome. Patients typically present with recurrent inopulmonary infections, severe cutaneous viral infections, food allergies and elevated serum IgE. Although patients may present with a spectrum of disease-related symptoms, molecular mechanisms explaining phenotypic variability in patients are poorly defined. Here we characterized a novel compound heterozygous mutation in DOCK8 in a patient diagnosed with primary combined immunodeficiency which was not typical of classical DOCK8 deficiency. In contrast to previously identified mutations in DOCK8 which result in complete loss of function, the newly identified single nucleotide insertion results in expression of a truncated DOCK8 protein. Functional evaluation of the truncated DOCK8 protein revealed its hypomorphic function. In addition we found somatic reversion of DOCK8 predominantly in T cells. The combination of somatic reversion and hypomorphic DOCK8 function explains the milder and atypical phenotype of the patient and further broadens the spectrum of DOCK8-associated disease.</p

    Eight further individuals with intellectual disability and epilepsy carrying bi-allelicCNTNAP2aberrations allow delineation of the mutational and phenotypic spectrum

    No full text
    BACKGROUND : Heterozygous copy number variants (CNVs) or sequence variants in the contactin-associated protein 2 gene CNTNAP2 have been discussed as risk factors for a wide spectrum of neurodevelopmental and neuropsychiatric disorders. Bi-allelic aberrations in this gene are causative for an autosomal-recessive disorder with epilepsy, severe intellectual disability (ID) and cortical dysplasia (CDFES). As the number of reported individuals is still limited, we aimed at a further characterisation of the full mutational and clinical spectrum. METHODS: Targeted sequencing, chromosomal microarray analysis or multigene panel sequencing was performed in individuals with severe ID and epilepsy. RESULTS: We identified homozygous mutations, compound heterozygous CNVs or CNVs and mutations in CNTNAP2 in eight individuals from six unrelated families. All aberrations were inherited from healthy, heterozygous parents and are predicted to be deleterious for protein function. Epilepsy occurred in all affected individuals with onset in the first 3.5 years of life. Further common aspects were ID (severe in 6/8), regression of speech development (5/8) and behavioural anomalies (7/8). Interestingly, cognitive impairment in one of two affected brothers was, in comparison, relatively mild with good speech and simple writing abilities. Cortical dysplasia that was previously reported in CDFES was not present in MRIs of six individuals and only suspected in one. CONCLUSIONS: By identifying novel homozygous or compound heterozygous, deleterious CNVs and mutations in eight individuals from six unrelated families with moderate-to-severe ID, early onset epilepsy and behavioural anomalies, we considerably broaden the mutational and clinical spectrum associated with bi-allelic aberrations in CNTNAP2

    Subjective hunger, gastric upset, and sleepiness in response to altered meal timing during simulated shiftwork

    No full text
    Shiftworkers report eating during the night when the body is primed to sleep. This study investigated the impact of altering food timing on subjective responses. Healthy participants (n = 44, 26 male, age Mean ± SD = 25.0 ± 2.9 years, BMI = 23.82 ± 2.59kg/m2) participated in a 7-day simulated shiftwork protocol. Participants were randomly allocated to one of three eating conditions. At 00:30, participants consumed a meal comprising 30% of 24 h energy intake (Meal condition; n = 14, 8 males), a snack comprising 10% of 24 h energy intake (Snack condition; n = 14; 8 males) or did not eat during the night (No Eating condition; n = 16, 10 males). Total 24 h individual energy intake and macronutrient content was constant across conditions. During the night, participants reported hunger, gut reaction, and sleepiness levels at 21:00, 23:30, 2:30, and 5:00. Mixed model analyses revealed that the snack condition reported significantly more hunger than the meal group (p < 0.001) with the no eating at night group reporting the greatest hunger (p < 0.001). There was no difference in desire to eat between meal and snack groups. Participants reported less sleepiness after the snack compared to after the meal (p < 0.001) or when not eating during the night (p < 0.001). Gastric upset did not differ between conditions. A snack during the nightshift could alleviate hunger during the nightshift without causing fullness or increased sleepiness
    corecore