26 research outputs found

    The Sociology of civilisations: Ibn Khaldun and a multi-civilisational world order

    Get PDF
    Due to advancements in telecommunications and transportation over the past century, the world is shrinking and physical boundaries are being eroded. The advent of globalization has facilitated the flow of ideas, values, goods, and people from one part of the world to another. This hyperbolic human activity has altered the structure of inter-civilizational relations and has spawned a spirited debate on how to create a multi-civilizational world order. This paper is critical of contemporary approaches on the subject that envisage the primacy of one civilization on the one hand and a clash among civilizations on the other. By examining Ibn Khaldun’s theory of ʿUmrān and the discipline of Fiqh, it argues that these concepts remain relevant for our understanding of the human condition today. While the theory of ʿUmrān analyzes political and economic relations at the macro-level, Fiqh tries to arrange societal relations at the microlevel. This paper also studies the Ottoman legacy since the Ottoman state was founded on Fiqh and the Millet system. It proved to be successful in preserving pluralistic communities based on principles of autonomy and mutual coexistence. Even though Ibn Khaldun was one of the pioneers in the field of civilizational studies, his seminal work is largely neglected in scholarly circles today, both Muslim and non-Muslim alike. The present inquiry seeks to address this shortcoming

    Follow up and comparative assessment of IgG, IgA, and neutralizing antibody responses to SARS-CoV-2 between mRNA-vaccinated naïve and unvaccinated naturally infected individuals over 10 months

    Get PDF
    BackgroundEvidence on the effectiveness of vaccination-induced immunity compared to SARS-CoV-2 natural immunity is warranted to inform vaccination recommendations. AimIn this study, we aimed to conduct a comparative assessment of antibody responses between vaccinated naïve (VN) and unvaccinated naturally infected individuals (NI) over 10 Months. MethodThe study comprised fully-vaccinated naïve individuals (VN; n = 596) who had no history of SARS-CoV-2 infection, and received two doses of either BNT162b2 or mRNA-1273, and naturally infected individuals who had a documented history of SARS-CoV-2 infection and no vaccination record (NI cohort; n = 218). We measured the levels of neutralizing total antibodies (NtAbs), anti-S-RBD IgG, and anti-S1 IgA titers among VN and NI up to ∼10 months from administration of the first dose, and up to ∼7 months from SARS-CoV-2 infection, respectively. To explore the relationship between the antibody responses and time, Spearman's correlation coefficient was computed. Furthermore, correlations between the levels of NtAbs/anti-S-RBD IgG and NtAbs/anti-S1 IgA were examined through pairwise correlation analysis. ResultsUp to six months, VN individuals had a significantly higher NtAb and anti-S-RBD IgG antibody responses compared to NI individuals. At the 7th month, there was a significant decline in antibody responses among VN individuals, but not NI individuals, with a minimum decrease of 3.7-fold (p < 0.001). Among VN individuals, anti-S1 IgA levels began to decrease significantly (1.4-fold; p = 0.007) after two months, and both NtAb and S-RBD IgG levels began to decline significantly (NtAb: 2.0-fold; p = 0.042, S-RBD IgG: 2.4-fold; p = 0.035) after three months. After 10 months, the most significant decline among VN individuals was observed for S-RBD-IgG (30.0-fold; P < 0.001), followed by NtAb (15.7-fold; P < 0.001) and S-IgA (3.7-fold; P < 0.001) (most stable). Moreover, after 5 months, there was no significant difference in the IgA response between the two groups. ConclusionThese findings have important implications for policymakers in the development of vaccination strategies, particularly in the consideration of booster doses to sustain long-lasting protection against COVID-19.This work was made possible by WHO grant number COVID-19-22-43 and grant number UREP28-173-3-057 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors

    Decoding the historical tale: COVID-19 impact on haematological malignancy patients-EPICOVIDEHA insights from 2020 to 2022

    Get PDF
    The COVID-19 pandemic heightened risks for individuals with hematological malignancies due to compromised immune systems, leading to more severe outcomes and increased mortality. While interventions like vaccines, targeted antivirals, and monoclonal antibodies have been effective for the general population, their benefits for these patients may not be as pronounced.Peer reviewe

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Seed Incorporated

    No full text

    A review on the properties and applications of chitosan, cellulose and deep eutectic solvent in green chemistry

    No full text
    The concept of green chemistry has attracted attention due to the green synthesis and ecofriendly nature of the compounds leading to the green and sustainable chemical industries and processes. Chitosan is an ecofriendly material, which is biodegradable, non-toxic, and biocompatible. It has the potential to be modified into biofilms for various applications such as biomedical, packaging, and pharmaceutical fields. Nevertheless, some poor properties of chitosan restrict its wide applications. The incorporation of nanocellulose fillers into chitosan matrix can enhance the mechanical and thermal properties of chitosan. Cellulose nanomaterials can be achieved through chemical and mechanical modifications. The common type of nanocellulose are cellulose nanofibers (CNFs), cellulose nano-whiskers (CNWs), tunicate CNCs (t-CNCs), algae cellulose particles (AC) and bacterial cellulose particles (BC). Nanocellulose are applied as the reinforcement fillers in various polymer matrices such as polysaccharides, proteins, lipids, polylactic acid etc. Deep eutectic solvents (DES) are relatively novel green solvents, which can be applied in various fields. DES are widely applied in metal processing, polymer processing and synthesis. Even though there are not much studies available on DES for synthesis of nanocomposite films; however they are used as eco-friendly solvents in manufacturing processes. This study reviews the discovery, structure, properties of chitosan and cellulose, their derivatives and applications. In addition, the paper also discusses the properties of DES and their applications

    Follow up and comparative assessment of IgG, IgA, and neutralizing antibody responses to SARS-CoV-2 between mRNA-vaccinated naïve and unvaccinated naturally infected individuals over 10 months

    Get PDF
    Background: Evidence on the effectiveness of vaccination-induced immunity compared to SARS-CoV-2 natural immunity is warranted to inform vaccination recommendations. Aim: In this study, we aimed to conduct a comparative assessment of antibody responses between vaccinated naïve (VN) and unvaccinated naturally infected individuals (NI) over 10 Months. Method: The study comprised fully-vaccinated naïve individuals (VN; n = 596) who had no history of SARS-CoV-2 infection, and received two doses of either BNT162b2 or mRNA-1273, and naturally infected individuals who had a documented history of SARS-CoV-2 infection and no vaccination record (NI cohort; n = 218). We measured the levels of neutralizing total antibodies (NtAbs), anti-S-RBD IgG, and anti-S1 IgA titers among VN and NI up to ∼10 months from administration of the first dose, and up to ∼7 months from SARS-CoV-2 infection, respectively. To explore the relationship between the antibody responses and time, Spearman's correlation coefficient was computed. Furthermore, correlations between the levels of NtAbs/anti-S-RBD IgG and NtAbs/anti-S1 IgA were examined through pairwise correlation analysis. Results: Up to six months, VN individuals had a significantly higher NtAb and anti-S-RBD IgG antibody responses compared to NI individuals. At the 7th month, there was a significant decline in antibody responses among VN individuals, but not NI individuals, with a minimum decrease of 3.7-fold (p < 0.001). Among VN individuals, anti-S1 IgA levels began to decrease significantly (1.4-fold; p = 0.007) after two months, and both NtAb and S-RBD IgG levels began to decline significantly (NtAb: 2.0-fold; p = 0.042, S-RBD IgG: 2.4-fold; p = 0.035) after three months. After 10 months, the most significant decline among VN individuals was observed for S-RBD-IgG (30.0-fold; P < 0.001), followed by NtAb (15.7-fold; P < 0.001) and S-IgA (3.7-fold; P < 0.001) (most stable). Moreover, after 5 months, there was no significant difference in the IgA response between the two groups. Conclusion: These findings have important implications for policymakers in the development of vaccination strategies, particularly in the consideration of booster doses to sustain long-lasting protection against COVID-19
    corecore