37 research outputs found

    Jamming Detection and Classification in OFDM-based UAVs via Feature- and Spectrogram-tailored Machine Learning

    Get PDF
    In this paper, a machine learning (ML) approach is proposed to detect and classify jamming attacks against orthogonal frequency division multiplexing (OFDM) receivers with applications to unmanned aerial vehicles (UAVs). Using software-defined radio (SDR), four types of jamming attacks; namely, barrage, protocol-aware, single-tone, and successive-pulse are launched and investigated. Each type is qualitatively evaluated considering jamming range, launch complexity, and attack severity. Then, a systematic testing procedure is established by placing an SDR in the vicinity of a UAV (i.e., drone) to extract radiometric features before and after a jamming attack is launched. Numeric features that include signal-to-noise ratio (SNR), energy threshold, and key OFDM parameters are used to develop a feature-based classification model via conventional ML algorithms. Furthermore, spectrogram images collected following the same testing procedure are exploited to build a spectrogram-based classification model via state-of-the-art deep learning algorithms (i.e., convolutional neural networks). The performance of both types of algorithms is analyzed quantitatively with metrics including detection and false alarm rates. Results show that the spectrogram-based model classifies jamming with an accuracy of 99.79% and a false-alarm of 0.03%, in comparison to 92.20% and 1.35%, respectively, with the feature-based counterpart

    Superfluids and Supersolids on Frustrated 2D Lattices

    Full text link
    We study the ground state of hard-core bosons with nearest-neighbor hopping and nearest-neighbor interactions on the triangular and Kagom\'e lattices by mapping to a system of spins (S=12S={1\over2}), which we analyze using spin-wave theory. We find that the both lattices display superfluid and supersolid (a coexistence of superfluid and solid) order as the parameters and filling are varied. Quantum fluctuations seem large enough in the Kagom\'e system to raise the interesting possibility of a disordered ground state.Comment: Latex format, 24 figures available by email upon request. Submitted to Physical Review

    A Core Human Microbiome as Viewed through 16S rRNA Sequence Clusters

    Get PDF
    We explore the microbiota of 18 body sites in over 200 individuals using sequences amplified V1–V3 and the V3–V5 small subunit ribosomal RNA (16S) hypervariable regions as part of the NIH Common Fund Human Microbiome Project. The body sites with the greatest number of core OTUs, defined as OTUs shared amongst 95% or more of the individuals, were the oral sites (saliva, tongue, cheek, gums, and throat) followed by the nose, stool, and skin, while the vaginal sites had the fewest number of OTUs shared across subjects. We found that commonalities between samples based on taxonomy could sometimes belie variability at the sub-genus OTU level. This was particularly apparent in the mouth where a given genus can be present in many different oral sites, but the sub-genus OTUs show very distinct site selection, and in the vaginal sites, which are consistently dominated by the Lactobacillus genus but have distinctly different sub-genus V1–V3 OTU populations across subjects. Different body sites show approximately a ten-fold difference in estimated microbial richness, with stool samples having the highest estimated richness, followed by the mouth, throat and gums, then by the skin, nasal and vaginal sites. Richness as measured by the V1–V3 primers was consistently higher than richness measured by V3–V5. We also show that when such a large cohort is analyzed at the genus level, most subjects fit the stool β€œenterotype” profile, but other subjects are intermediate, blurring the distinction between the enterotypes. When analyzed at the finer-scale, OTU level, there was little or no segregation into stool enterotypes, but in the vagina distinct biotypes were apparent. Finally, we note that even OTUs present in nearly every subject, or that dominate in some samples, showed orders of magnitude variation in relative abundance emphasizing the highly variable nature across individuals

    Quantum Monte Carlo study of the one-dimensional Holstein model of spinless fermions

    Get PDF
    The Holstein model of spinless fermions interacting with dispersionless phonons in one dimension is studied by a Green's function Monte Carlo technique. The ground state energy, first fermionic excited state, density wave correlations, and mean lattice displacement are calculated for lattices of up to 16 sites, for one fermion per two sites, i.e., a half-filled band. Results are obtained for values of the fermion hopping parameter of t=0.1Ο‰t=0.1 \omega, Ο‰\omega, and 10Ο‰10 \omega where Ο‰\omega is the phonon frequency. At a finite fermion-phonon coupling gg there is a transition from a metallic phase to an insulating phase in which there is charge-density-wave order. Finite size scaling is found to hold in the metallic phase and is used to extract the coupling dependence of the Luttinger liquid parameters, uρu_\rho and KρK_\rho, the velocity of charge excitations and the correlation exponent, respectively. For free fermions (g=0g=0) and for strong coupling (g2≫tΟ‰g^2 \gg t \omega) our results agree well with known analytic results. For t=Ο‰t=\omega and t=10Ο‰t=10\omega our results are inconsistent with the metal-insulator transition being a Kosterlitz-Thouless transition.\\Comment: 16 pages of ReVTeX, 11 figures in uuencoded compressed tar file. Minor changes to text. Our results are inconsistent with the metal-insulator transition studied being a Kosterlitz-Thouless transition. The figures are now in the correct order. To appear in Physical Review B, April 15, 199

    Type III Secretion System Genes of Dickeya dadantii 3937 Are Induced by Plant Phenolic Acids

    Get PDF
    Background: Dickeya dadantii is a broad-host range phytopathogen. D. dadantii 3937 (Ech3937) possesses a type III secretion system (T3SS), a major virulence factor secretion system in many Gram-negative pathogens of plants and animals. In Ech3937, the T3SS is regulated by two major regulatory pathways, HrpX/HrpY-HrpS-HrpL and GacS/GacA-rsmB-RsmA pathways. Although the plant apoplast environment, low pH, low temperature, and absence of complex nitrogen sources in media have been associated with the induction of T3SS genes of phytobacteria, no specific inducer has yet been identified. Methodology/Principal Findings: In this work, we identified two novel plant phenolic compounds, o-coumaric acid (OCA) and t-cinnamic acid (TCA), that induced the expression of T3SS genes dspE (a T3SS effector), hrpA (a structural protein of the T3SS pilus), and hrpN (a T3SS harpin) in vitro. Assays by qRT-PCR showed higher amounts of mRNA of hrpL (a T3SS alternative sigma factor) and rsmB (an untranslated regulatory RNA), but not hrpS (a s 54-enhancer binding protein) of Ech3937 when these two plant compounds were supplemented into minimal medium (MM). However, promoter activity assays using flow cytometry showed similar promoter activities of hrpN in rsmB mutant Ech148 grown in MM and MM supplemented with these phenolic compounds. Compared with MM alone, only slightly higher promoter activities of hrpL were observed in bacterial cells grown in MM supplemented with OCA/TCA. Conclusion/Significance: The induction of T3SS expression by OCA and TCA is moderated through the rsmB-Rsm

    Pyrosequencing-Based Analysis of the Mucosal Microbiota in Healthy Individuals Reveals Ubiquitous Bacterial Groups and Micro-Heterogeneity

    Get PDF
    This study used 16S rRNA-based pyrosequencing to examine the microbial community that is closely associated with the colonic mucosa of five healthy individuals. Spatial heterogeneity in microbiota was measured at right colon, left colon and rectum, and between biopsy duplicates spaced 1 cm apart. The data demonstrate that mucosal-associated microbiota is comprised of Firmicutes (50.9%Β±21.3%), Bacteroidetes (40.2%Β±23.8%) and Proteobacteria (8.6%Β±4.7%), and that interindividual differences were apparent. Among the genera, Bacteroides, Leuconostoc and Weissella were present at high abundance (4.6% to 41.2%) in more than 90% of the studied biopsy samples. Lactococcus, Streptococcus, Acidovorax, Acinetobacter, Blautia, Faecalibacterium, Veillonella, and several unclassified bacterial groups were also ubiquitously present at an abundance <7.0% of total microbial community. With the exception of one individual, the mucosal-associated microbiota was relatively homogeneous along the colon (average 61% Bray-Curtis similarity). However, micro-heterogeneity was observed in biopsy duplicates within defined colonic sites for three of the individuals. A weak but significant Mantel correlation of 0.13 was observed between the abundance of acidomucins and mucosal-associated microbiota (P-value β€Š=β€Š 0.04), indicating that the localized biochemical differences may contribute in part to the micro-heterogeneity. This study provided a detailed insight to the baseline mucosal microbiota along the colon, and revealed the existence of micro-heterogeneity within defined colonic sites for certain individuals

    A Multi-Platform Flow Device for Microbial (Co-) Cultivation and Microscopic Analysis

    Get PDF
    Novel microbial cultivation platforms are of increasing interest to researchers in academia and industry. The development of materials with specialized chemical and geometric properties has opened up new possibilities in the study of previously unculturable microorganisms and has facilitated the design of elegant, high-throughput experimental set-ups. Within the context of the international Genetically Engineered Machine (iGEM) competition, we set out to design, manufacture, and implement a flow device that can accommodate multiple growth platforms, that is, a silicon nitride based microsieve and a porous aluminium oxide based microdish. It provides control over (co-)culturing conditions similar to a chemostat, while allowing organisms to be observed microscopically. The device was designed to be affordable, reusable, and above all, versatile. To test its functionality and general utility, we performed multiple experiments with Escherichia coli cells harboring synthetic gene circuits and were able to quantitatively study emerging expression dynamics in real-time via fluorescence microscopy. Furthermore, we demonstrated that the device provides a unique environment for the cultivation of nematodes, suggesting that the device could also prove useful in microscopy studies of multicellular microorganisms

    A Systematic Analysis of Eluted Fraction of Plasma Post Immunoaffinity Depletion: Implications in Biomarker Discovery

    Get PDF
    Plasma is the most easily accessible source for biomarker discovery in clinical proteomics. However, identifying potential biomarkers from plasma is a challenge given the large dynamic range of proteins. The potential biomarkers in plasma are generally present at very low abundance levels and hence identification of these low abundance proteins necessitates the depletion of highly abundant proteins. Sample pre-fractionation using immuno-depletion of high abundance proteins using multi-affinity removal system (MARS) has been a popular method to deplete multiple high abundance proteins. However, depletion of these abundant proteins can result in concomitant removal of low abundant proteins. Although there are some reports suggesting the removal of non-targeted proteins, the predominant view is that number of such proteins is small. In this study, we identified proteins that are removed along with the targeted high abundant proteins. Three plasma samples were depleted using each of the three MARS (Hu-6, Hu-14 and Proteoprep 20) cartridges. The affinity bound fractions were subjected to gelC-MS using an LTQ-Orbitrap instrument. Using four database search algorithms including MassWiz (developed in house), we selected the peptides identified at <1% FDR. Peptides identified by at least two algorithms were selected for protein identification. After this rigorous bioinformatics analysis, we identified 101 proteins with high confidence. Thus, we believe that for biomarker discovery and proper quantitation of proteins, it might be better to study both bound and depleted fractions from any MARS depleted plasma sample

    Trans-Translation in Helicobacter pylori: Essentiality of Ribosome Rescue and Requirement of Protein Tagging for Stress Resistance and Competence

    Get PDF
    BACKGROUND: The ubiquitous bacterial trans-translation is one of the most studied quality control mechanisms. Trans-translation requires two specific factors, a small RNA SsrA (tmRNA) and a protein co-factor SmpB, to promote the release of ribosomes stalled on defective mRNAs and to add a specific tag sequence to aberrant polypeptides to direct them to degradation pathways. Helicobacter pylori is a pathogen persistently colonizing a hostile niche, the stomach of humans. PRINCIPAL FINDINGS: We investigated the role of trans-translation in this bacterium well fitted to resist stressful conditions and found that both smpB and ssrA were essential genes. Five mutant versions of ssrA were generated in H. pylori in order to investigate the function of trans-translation in this organism. Mutation of the resume codon that allows the switch of template of the ribosome required for its release was essential in vivo, however a mutant in which this codon was followed by stop codons interrupting the tag sequence was viable. Therefore one round of translation is sufficient to promote the rescue of stalled ribosomes. A mutant expressing a truncated SsrA tag was viable in H. pylori, but affected in competence and tolerance to both oxidative and antibiotic stresses. This demonstrates that control of protein degradation through trans-translation is by itself central in the management of stress conditions and of competence and supports a regulatory role of trans-translation-dependent protein tagging. In addition, the expression of smpB and ssrA was found to be induced upon acid exposure of H. pylori. CONCLUSIONS: We conclude to a central role of trans-translation in H. pylori both for ribosome rescue possibly due to more severe stalling and for protein degradation to recover from stress conditions frequently encountered in the gastric environment. Finally, the essential trans-translation machinery of H. pylori is an excellent specific target for the development of novel antibiotics

    Generation and Validation of a Shewanella oneidensis MR-1 Clone Set for Protein Expression and Phage Display

    Get PDF
    A comprehensive gene collection for S. oneidensis was constructed using the lambda recombinase (Gateway) cloning system. A total of 3584 individual ORFs (85%) have been successfully cloned into the entry plasmids. To validate the use of the clone set, three sets of ORFs were examined within three different destination vectors constructed in this study. Success rates for heterologous protein expression of S. oneidensis His- or His/GST- tagged proteins in E. coli were approximately 70%. The ArcA and NarP transcription factor proteins were tested in an in vitro binding assay to demonstrate that functional proteins can be successfully produced using the clone set. Further functional validation of the clone set was obtained from phage display experiments in which a phage encoding thioredoxin was successfully isolated from a pool of 80 different clones after three rounds of biopanning using immobilized anti-thioredoxin antibody as a target. This clone set complements existing genomic (e.g., whole-genome microarray) and other proteomic tools (e.g., mass spectrometry-based proteomic analysis), and facilitates a wide variety of integrated studies, including protein expression, purification, and functional analyses of proteins both in vivo and in vitro
    corecore