1,833 research outputs found

    Necessary Conditions for the Generic Global Rigidity of Frameworks on Surfaces

    Full text link
    A result due in its various parts to Hendrickson, Connelly, and Jackson and Jord\'an, provides a purely combinatorial characterisation of global rigidity for generic bar-joint frameworks in R2\mathbb{R}^2. The analogous conditions are known to be insufficient to characterise generic global rigidity in higher dimensions. Recently Laman-type characterisations of rigidity have been obtained for generic frameworks in R3\mathbb{R}^3 when the vertices are constrained to lie on various surfaces, such as the cylinder and the cone. In this paper we obtain analogues of Hendrickson's necessary conditions for the global rigidity of generic frameworks on the cylinder, cone and ellipsoid.Comment: 13 page

    SiCf/SiC ceramic matrix composite – A turbine engine perspective

    Get PDF
    Please click Additional Files below to see the full abstract

    Geogrid-Reinforced Soil Mat for Temporary Support of Heavy Equipment

    Get PDF
    Concrete blocks were used in a temporary storage facility to support replacement steam generators for a nuclear power plant. From the subsurface investigation, it was found that direct ground support of these concrete blocks was not feasible. In order to avoid the use of piles and associated concrete pile cap, which would be costly and take longer to build, a geogrid-reinforced soil mat foundation was adopted. The concrete blocks were put on a steel plate, which in turn rested on the geogrid-reinforced soil mat. Upon completion of the geogrid-reinforced structural fill mat, the replacement steam generators were moved into the temporary storage facility. Settlement monitoring of the concrete blocks proceeded for more than five months and disclosed settlements that were larger than those calculated. However, the measured settlements were still relatively small and the geogrid-reinforced soil mat foundation performed satisfactorily

    Accuracy Analysis of the Measurement of Centre of Gravity and Moment of Inertia with a Swing

    Get PDF
    Floating devices under wave and current loads are typically designed based on numerical methods followed by a validation with experimental investigations. This allows an independent check due to the comparison of two different modelling approaches based on different assumptions. At an early stage of the project, numerical simulations are based on theoretical (ideal) values of the centre of gravity (CG) and moment of inertia (MI). The building process of a scaled model results very often in a requested simplification of certain parts, which can influence the CG and also the MI of the scaled model. Knowing those discrepancies allows us to improve the comparability of both approaches but the measurement of those values is connected with either a higher uncertainty or a high level of effort. A significant improvement of such measurements can be reached by the deployment of a specific experimental set-up. This paper presents the classification of the newly designed swing with a high accuracy inertial inclinometer, which was verified by the marker-based motion capturing system. The achieved experiences are useful for the future use of the set-up as well as similar investigations. The comparison with the theoretical values for the swing as well as an example model showed very good agreements and a high accuracy of few millimetres for the CG and an error smaller 1% for MI

    Instrument for Measuring Temperature of Water

    Get PDF
    A pseudo-Brewster-angle infrared radiometer has been proposed for use in noncontact measurement of the surface temperature of a large body of water (e.g., a lake or ocean). This radiometer could be situated on a waterborne, airborne, or spaceborne platform. The design of the pseudo-Brewster-angle radiometer would exploit the spectral-emissivity and polarization characteristics of water to minimize errors attributable to the emissivity of water and to the reflection of downwelling (e.g., Solar and cloud-reflected) infrared radiation. The relevant emissivity and polarization characteristics are the following: . The Brewster angle is the angle at which light polarized parallel to the plane of incidence on a purely dielectric material is not reflected. The pseudo-Brewster angle, defined for a lossy dielectric (somewhat electrically conductive) material, is the angle for which the reflectivity for parallel-polarized light is minimized. For pure water, the reflectivity for parallel-polarized light is only 2.2 x 10(exp -4) at its pseudo- Brewster angle of 51deg. The reflectivity remains near zero, several degrees off from the 51deg optimum, allowing this angle of incidence requirement to be easily achieved. . The wavelength range of interest for measuring water temperatures is 8 to 12 microns. The emissivity of water for parallel- polarized light at the pseudo-Brewster angle is greater than 0.999 in this wavelength range. The radiometer would be sensitive in the wavelength range of 8 to 12 microns, would be equipped with a polarizer to discriminate against infrared light polarized perpendicular to the plane of incidence, and would be aimed toward a body of water at the pseudo- Brewster angle (see figure). Because the infrared radiation entering the radiometer would be polarized parallel to the plane of incidence and because very little downwelling parallel-polarized radiation would be reflected into the radiometer on account of the pseudo-Brewster arrangement, the radiation received by the radiometer would consist almost entirely of thermal emission from the surface of the water. Because the emissivity of the water would be very close to 1, the water could be regarded as a close approximation of a blackbody for the purpose of computing its surface temperature from the radiometer measurements by use of the Planck radiation law

    Specificity and off-target effects of AAV8-TBG viral vectors for the manipulation of hepatocellular gene expression in mice

    Get PDF
    Mice are a widely used pre-clinical model system in large part due to their potential for genetic manipulation. The ability to manipulate gene expression in specific cells under temporal control is a powerful experimental tool. The liver is central to metabolic homeostasis and a site of many diseases, making the targeting of hepatocytes attractive. Adeno-associated virus 8 (AAV8) vectors are valuable instruments for the manipulation of hepatocellular gene expression. However, their off-target effects in mice have not been thoroughly explored. Here, we sought to identify the short-term off-target effects of AAV8 administration in mice. To do this, we injected C57BL/6J wild-type mice with either recombinant AAV8 vectors expressing Cre recombinase or control AAV8 vectors and characterised the changes in general health and in liver physiology, histology and transcriptomics compared to uninjected controls. We observed an acute and transient trend for reduction in homeostatic liver proliferation together with induction of the DNA damage marker γH2AX following AAV8 administration. The latter was enhanced upon Cre recombinase expression by the vector. Furthermore, we observed transcriptional changes in genes involved in circadian rhythm and response to infection. Notably, there were no additional transcriptomic changes upon expression of Cre recombinase by the AAV8 vector. Overall, there was no evidence of liver injury, and only mild T-cell infiltration was observed 14 days following AAV8 infection. These data advance the technique of hepatocellular genome editing through Cre-Lox recombination using Cre expressing AAV vectors, demonstrating their minimal effects on murine physiology and highlight the more subtle off target effects of these systems

    Enhancing communication between academic staff and students to undergraduate degree level with a particular focus on assessment requirements

    Get PDF
    The way that academic staff make their requirements known to students is varied -for students of Art and Design this is usually a written brief, supplemented with averbal briefing. All assessment in Art and Design is by course work in a variety offormats: written, visual, electronic and spoken. There is a tension betweenencouraging original and creative responses and being over prescriptive whenstipulating assessable work requirements. The criteria on which visual work isassessed are often not clear to students and are sometimes perceived as beingsubjective. Ideas about what constitutes quality in visual work can also be confusedleading to a lack of transparency in the assessment process. Additionally, poorcommunication between staff and students may lead to procedural problems aboutsubmission of work, deadlines and so on. This is especially the case when studentnumbers are high. In addition, as funding models alter the traditional staff - studentrelationship moving it closer to a provider - customer relationship, it becomesimperative that expectations and obligations are made clear for all parties. Largequantities of information have to be made available in an accessible and user-friendlyway. Initial information gathering from students indicates that electroniccommunication including e-mail and text messaging would be both popular andappropriate for some types of communication
    • …
    corecore