4,736 research outputs found
Filtering and scalability in the ECO distributed event model
Event-based communication is useful in many application domains, ranging from small, centralised applications to large, distributed systems. Many different event models have been developed to address the requirements of different application domains. One such model is the ECO model which was designed to support distributed virtual world applications. Like many other event models, ECO has event filtering capabilities meant to improve scalability by decreasing network traffic in a distributed implementation. Our recent work in event-based systems has included building a fully distributed version of the ECO model, including event filtering capabilities. This paper describes the results of our evaluation of filters as a means of achieving increased scalability in the ECO model. The evaluation is empirical and real data gathered from an actual event-based system is used
Methods of editing cloud and atmospheric layer affected pixels from satellite data
Subvisible cirrus clouds (SCi) were easily distinguished in mid-infrared (MIR) TIROS-N daytime data from south Texas and northeast Mexico. The MIR (3.55-3.93 micrometer) pixel digital count means of the SCi affected areas were more than 3.5 standard deviations on the cold side of the scene means. (These standard deviations were made free of the effects of unusual instrument error by factoring out the Ch 3 MIR noise on the basis of detailed examination of noisy and noise-free pixels). SCi affected areas in the IR Ch 4 (10.5-11.5 micrometer) appeared cooler than the general scene, but were not as prominent as in Ch 3, being less than 2 standard deviations from the scene mean. Ch 3 and 4 standard deviations and coefficients of variation are not reliable indicators, by themselves, of the presence of SCi because land features can have similar statistical properties
Retrograde Accretion and Merging Supermassive Black Holes
We investigate whether a circumbinary gas disc can coalesce a supermassive
black hole binary system in the centre of a galaxy. This is known to be
problematic for a prograde disc. We show that in contrast, interaction with a
retrograde circumbinary disc is considerably more effective in shrinking the
binary because there are no orbital resonances. The binary directly absorbs
negative angular momentum from the circumbinary disc by capturing gas into a
disc around the secondary black hole, or discs around both holes if the binary
mass ratio is close to unity. In many cases the binary orbit becomes eccentric,
shortening the pericentre distance as the eccentricity grows. In all cases the
binary coalesces once it has absorbed the angular momentum of a gas mass
comparable to that of the secondary black hole. Importantly, this conclusion is
unaffected even if the gas inflow rate through the disc is formally
super--Eddington for either hole. The coalescence timescale is therefore always
, where is the secondary black hole mass and
the inflow rate through the circumbinary disc.Comment: 8 pages, 4 figures. Accepted for publication in MNRAS. Movies of the
simulations can be found at:
http://www.astro.le.ac.uk/users/cjn12/RetroBinaryMovies.htm
Dihydrofolate reductase of Streptococcus faecium II. Purification and some properties of two dihydrofolate reductases from the Amethopterin-resistant mutant, Streptococcus Faecium Var. Durans Strain A
From a single amethopterin-resistant organism, Streptococcus faecium var. durans strain A, two different dihydrofolate reductases have been obtained as essentially homogeneous proteins in good yield. One of the reductases has a similar substrate specificity and turnover number (about 8000 moles per min per mole of enzyme) to the single reductase found in the amethopterin-sensitive strain of S. faecium var. durans, ATCC 8043, and has therefore been designated "wild type." The other enzyme, which is distinguished by its ability to catalyze the reduction of folate, in addition to dihydrofolate, and by its lower turnover number (about 900 with dihydrofolate), has been designated "mutant type." Since the wild type and mutant type reductases have sedimentation constants (s20,buffer) of 2.58 S and 2.04 S, respectively, they are probably significantly different in molecular weight. Each exhibits a single pH optimum at pH 5.8 and is inactivated by urea. Neither is affected by methylmercuric salts but the wild type reductase is inactivated by phenyl-mercuric acetate and p-mercuribenzoate. Monovalent cations increase the activity of the mutant type reductase but decrease that of the wild type reductase. It is suggested that the amethopterin resistance in vivo of strain A depends at least partly on the folate reductase activity of the mutant type reductase
Methods of editing cloud and atmospheric layer affected pixels from satellite data
The location and migration of cloud, land and water features were examined in spectral space (reflective VIS vs. emissive IR). Daytime HCMM data showed two distinct types of cloud affected pixels in the south Texas test area. High altitude cirrus and/or cirrostratus and "subvisible cirrus" (SCi) reflected the same or only slightly more than land features. In the emissive band, the digital counts ranged from 1 to over 75 and overlapped land features. Pixels consisting of cumulus clouds, or of mixed cumulus and landscape, clustered in a different area of spectral space than the high altitude cloud pixels. Cumulus affected pixels were more reflective than land and water pixels. In August the high altitude clouds and SCi were more emissive than similar clouds were in July. Four-channel TIROS-N data were examined with the objective of developing a multispectral screening technique for removing SCi contaminated data
Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions
There are no author-identified significant results in this report
Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions
There are no author-identified significant results in this report
AgRISTARS: Early warning and crop condition assessment. Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions
Emissive (10.5 to 12.5 microns) and reflective (0.55 to 1.1 microns) data for ten day scenes and infrared data for six night scenes of southern Texas were analyzed for plant cover, soil temperature, freeze, water stress, and evapotranspiration. Heat capacity mapping mission radiometric temperatures were: within 2 C of dewpoint temperatures, significantly correlated with variables important in evapotranspiration, and related to freeze severity and planting depth soil temperatures
Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions
There are no author-identified significant results in this report
Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions
The author has identified the following significant results. HCMM day/night coverage 12 hours apart cannot be obtained at 26 deg N latitude; nor have any pairs 36 hours apart been obtained. A day-IR scene and a night scene for two different dates were analyzed. A profile across the test site for the same latitude shows that the two profiles are near mirror images of each other over land surfaces and that the temperature of two large water bodies, Falcon Reservoir and the Gulf of Mexico, are nearly identical on two dates. During the time interval between overpasses, the vegetative cover remained static due to winter dormancy. The data suggest that day/night temperature differences measured weeks apart may yield meaningful information about the contrast between daytime maximum and nighttime minimum temperatures for a given site
- ā¦