2,261 research outputs found

    Seabed corrugations beneath an Antarctic ice shelf revealed by autonomous underwater vehicle survey: Origin and implications for the history of Pine Island Glacier

    Get PDF
    Ice shelves are critical features in the debate about West Antarctic ice sheet change and sea level rise, both because they limit ice discharge and because they are sensitive to change in the surrounding ocean. The Pine Island Glacier ice shelf has been thinning rapidly since at least the early 1990s, which has caused its trunk to accelerate and retreat. Although the ice shelf front has remained stable for the past six decades, past periods of ice shelf collapse have been inferred from relict seabed "corrugations" (corrugated ridges), preserved 340 km from the glacier in Pine Island Trough. Here we present high-resolution bathymetry gathered by an autonomous underwater vehicle operating beneath an Antarctic ice shelf, which provides evidence of long-term change in Pine Island Glacier. Corrugations and ploughmarks on a sub-ice shelf ridge that was a former grounding line closely resemble those observed offshore, interpreted previously as the result of iceberg grounding. The same interpretation here would indicate a significantly reduced ice shelf extent within the last 11 kyr, implying Holocene glacier retreat beyond present limits, or a past tidewater glacier regime different from today. The alternative, that corrugations were not formed in open water, would question ice shelf collapse events interpreted from the geological record, revealing detail of another bed-shaping process occurring at glacier margins. We assess hypotheses for corrugation formation and suggest periodic grounding of ice shelf keels during glacier unpinning as a viable origin. This interpretation requires neither loss of the ice shelf nor glacier retreat and is consistent with a "stable" grounding-line configuration throughout the Holocene

    Elliptic Phases: A Study of the Nonlinear Elasticity of Twist-Grain Boundaries

    Full text link
    We develop an explicit and tractable representation of a twist-grain-boundary phase of a smectic A liquid crystal. This allows us to calculate the interaction energy between grain boundaries and the relative contributions from the bending and compression deformations. We discuss the special stability of the 90 degree grain boundaries and discuss the relation of this structure to the Schwarz D surface.Comment: 4 pages, 2 figure

    Doubly connected minimal surfaces and extremal harmonic mappings

    Get PDF
    The concept of a conformal deformation has two natural extensions: quasiconformal and harmonic mappings. Both classes do not preserve the conformal type of the domain, however they cannot change it in an arbitrary way. Doubly connected domains are where one first observes nontrivial conformal invariants. Herbert Groetzsch and Johannes C. C. Nitsche addressed this issue for quasiconformal and harmonic mappings, respectively. Combining these concepts we obtain sharp estimates for quasiconformal harmonic mappings between doubly connected domains. We then apply our results to the Cauchy problem for minimal surfaces, also known as the Bjorling problem. Specifically, we obtain a sharp estimate of the modulus of a doubly connected minimal surface that evolves from its inner boundary with a given initial slope.Comment: 35 pages, 2 figures. Minor edits, references adde

    Direct-current-dependent shift of theta-burst-induced plasticity in the human motor cortex

    Get PDF
    Animal studies using polarising currents have shown that induction of synaptic long-term potentiation (LTP) and long-term depression (LTD) by bursts of patterned stimulation is affected by the membrane potential of the postsynaptic neurone. The aim of the present experiments was to test whether it is possible to observe similar phenomena in humans with the aim of improving present protocols of inducing synaptic plasticity for therapeutic purposes. We tested whether the LTP/LTD-like after effects of transcranial theta-burst stimulation (TBS) of human motor cortex, an analogue of patterned electrical stimulation in animals, were affected by simultaneous transcranial direct-current stimulation (tDCS), a non-invasive method of polarising cortical neurones in humans. Nine healthy volunteers were investigated in a single-blind, balanced cross-over study; continuous TBS (cTBS) was used to introduce LTD-like after effects, whereas intermittent TBS (iTBS) produced LTP-like effects. Each pattern was coupled with concurrent application of tDCS (<200 s, anodal, cathodal, sham). Cathodal tDCS increased the response to iTBS and abolished the effects of cTBS. Anodal tDCS changed the effects of cTBS towards facilitation, but had no impact on iTBS. Cortical motor thresholds and intracortical inhibitory/facilitatory networks were not altered by any of the stimulation protocols. We conclude that the after effects of TBS can be modulated by concurrent tDCS. We hypothesise that tDCS changes the membrane potential of the apical dendrites of cortical pyramidal neurones and that this changes the response to patterned synaptic input evoked by TBS. The data show that it may be possible to enhance LTP-like plasticity after TBS in the human cortex

    Extensions of adaptive slope-seeking for active flow control

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.To speed up gradient estimation in a slope-seeking controller two different modifications are proposed in this study. In a first approach, the gradient estimation is based on a locally identified black-box model. A further improvement is obtained by applying an extended Kalman filter to estimate the local gradient of an input—output map. Moreover, a simple method is outlined to adapt the search radius in the classical extremum- and slope-seeking approach to reduce the perturbations near the optimal state. To show the versatility of the slope-seeking controller for flow control applications two different wind tunnel experiments are considered, namely with a two-dimensional bluff body and a generic three-dimensional car model (Ahmed body).DFG, SFB 557, Beeinflussung komplexer turbulenter Scherströmunge

    Compromised neuroplasticity in cigarette smokers under nicotine withdrawal is restituted by the nicotinic α4β2-receptor partial agonist varenicline

    Get PDF
    Nicotine modulates neuroplasticity and improves cognitive functions in animals and humans. In the brain of smoking individuals, calcium-dependent plasticity induced by non-invasive brain stimulation methods such as transcranial direct current stimulation (tDCS) and paired associative stimulation (PAS) is impaired by nicotine withdrawal, but partially re-established after nicotine re-administration. In order to investigate the underlying mechanism further, we tested the impact of the α4β2-nicotinic receptor partial agonist varenicline on focal and non-focal plasticity in smokers during nicotine withdrawal, induced by PAS and tDCS, respectively. We administered low (0.3 mg) and high (1.0 mg) single doses of varenicline or placebo medication before stimulation over the left motor cortex of 20 healthy smokers under nicotine withdrawal. Motor cortex excitability was monitored by single-pulse transcranial magnetic stimulation-induced motor evoked potential amplitudes for 36 hours after plasticity induction. Stimulation-induced plasticity was absent under placebo medication, whereas it was present in all conditions under high dose. Low dose restituted only tDCS-induced non-focal plasticity, producing no significant impact on focal plasticity. High dose varenicline also prolonged inhibitory plasticity. These results are comparable to the impact of nicotine on withdrawal-related impaired plasticity in smokers and suggest that α4β2 nicotinic receptors are relevantly involved in plasticity deficits and restitution in smokers

    Spatial correlation of two-dimensional Bosonic multimode condensates

    Get PDF
    This research has been supported by the Japan Society for the Promotion of Science (JSPS) through its “Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program),” by Navy/SPAWAR Grant No. N66001-09-1-2024, and by National Science Foundation Grant No. ECCS-09 25549. W.H.N. acknowledges a Gerhard Casper Stanford Graduate Fellowship for support.The Berezinskii-Kosterlitz-Thouless (BKT) theorem predicts that two-dimensional Bosonic condensates exhibit quasi-long-range order which is characterized by a slow decay of the spatial coherence. However previous measurements on exciton-polarition condensates revealed that their spatial coherence can decay faster than allowed under the BKT theory, and different theoretical explanations have already been proposed. Through theoretical and experimental study of exciton-polariton condensates, we show that the fast decay of the coherence can be explained through the simultaneous presence of multiple modes in the condensate.Publisher PDFPeer reviewe

    Estimation of the motor threshold for near-rectangular stimuli using the Hodgkin-Huxley model

    Get PDF
    The motor threshold measurement is a standard in preintervention probing in TMS experiments. We aim to predict the motor threshold for near-rectangular stimuli to efficiently determine the motor threshold size before any experiments take place. Estimating the behavior of large-scale networks requires dynamically accurate and efficient modeling. We utilized a Hodgkin–Huxley (HH) type model to evaluate motor threshold values and computationally validated its function with known true threshold data from 50 participants trials from state-of-the-art published datasets. For monophasic, bidirectional, and unidirectional rectangular stimuli in posterior-anterior or anterior-posterior directions as generated by the cTMS device, computational modeling of the HH model captured the experimentally measured population-averaged motor threshold values at high precision (maximum error ≤ 8%). The convergence of our biophysically based modeling study with experimental data in humans reveals that the effect of the stimulus shape is strongly correlated with the activation kinetics of the voltage-gated ion channels. The proposed method can reliably predict motor threshold size using the conductance-based neuronal models and could therefore be embedded in new generation neurostimulators. Advancements in neural modeling will make it possible to enhance treatment procedures by reducing the number of delivered magnetic stimuli to participants

    Korn's second inequality and geometric rigidity with mixed growth conditions

    Full text link
    Geometric rigidity states that a gradient field which is LpL^p-close to the set of proper rotations is necessarily LpL^p-close to a fixed rotation, and is one key estimate in nonlinear elasticity. In several applications, as for example in the theory of plasticity, energy densities with mixed growth appear. We show here that geometric rigidity holds also in Lp+LqL^p+L^q and in Lp,qL^{p,q} interpolation spaces. As a first step we prove the corresponding linear inequality, which generalizes Korn's inequality to these spaces

    High-resolution sub-ice-shelf seafloor records of 20th-century ungrounding and retreat of Pine Island Glacier, West Antarctica.

    Get PDF
    Pine Island Glacier Ice Shelf (PIGIS) has been thinning rapidly over recent decades, resulting in a progressive drawdown of the inland ice and an upstream migration of the grounding line. The resultant ice loss from Pine Island Glacier (PIG) and its neighboring ice streams presently contributes an estimated ∼10% to global sea level rise, motivating efforts to constrain better the rate of future ice retreat. One route toward gaining a better understanding of the processes required to underpin physically based projections is provided by examining assemblages of landforms and sediment exposed over recent decades by the ongoing ungrounding of PIG. Here we present high-resolution bathymetry and sub-bottom-profiler data acquired by autonomous underwater vehicle (AUV) surveys beneath PIGIS in 2009 and 2014, respectively. We identify landforms and sediments associated with grounded ice flow, proglacial and subglacial sediment transport, overprinting of lightly grounded ice-shelf keels, and stepwise grounding line retreat. The location of a submarine ridge (Jenkins Ridge) coincides with a transition from exposed crystalline bedrock to abundant sediment cover potentially linked to a thick sedimentary basin extending upstream of the modern grounding line. The capability of acquiring high-resolution data from AUV platforms enables observations of landforms and understanding of processes on a scale that is not possible in standard offshore geophysical surveys
    corecore