146 research outputs found

    HPV16 E6 gene variations in invasive cervical squamous cell carcinoma and cancer in situ from Russian patients

    Get PDF
    HPV16 is frequently seen in invasive cervical cancer (ICC) and cervical intraepithelial neoplasia (CIN). Its E6 gene has frequent sequence variations. Although some E6 variants have been reported to have different biochemical or biological properties, they do not show geographical identity. Moreover, the definition of ‘variant’ has been a source of confusion because it has been based on all departures from the ‘prototype’ once isolated randomly from an ICC case. We amplified the HPV16 E6 gene by PCR from fresh-frozen tissue of 104 cases of ICC and CIN from Russian patients and sequenced it in positive cases. We found that 32 of 55 (58.2%) ICC cases and 18 of 49 (36.7%) CIN cases were HPV 16-positive and we could identify 3 groups of E6 variants: group A was characterized by G at nt 350 where group B had T, and group M was a heterogeneous mixture of unique E6 variants; no significant difference existed in the distribution of the different groups between ICC and CIN; the clinically malignant (as defined by FIGO stage) order between the groups was M > A > B in ICC; in the cases with a single HPV16 E6 sequence, coexisting ICC, CIN and normal epithelium in the same patient shared the E6 variant; and 4 cases of ICC had double/multiple E6 variants. The results did not show any importance of E6 variants for ICC progression in Russian women. The results also indicated that the original HPV16 variant persisted during ICC progression, and that at a low frequency, double infections and/or mutation of variants might occur. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Автоматизированное рабочее место партнера ОАО «Гомсельмаш»

    Get PDF
    This paper describes a system for structure-and-motion estimation for real-time navigation and obstacle avoidance. We demonstrate it technique to increase the efficiency of the 5-point solution to the relative pose problem. This is achieved by a novel sampling scheme, where We add a distance constraint on the sampled points inside the RANSAC loop. before calculating the 5-point solution. Our setup uses the KLT tracker to establish point correspondences across tone in live video We also demonstrate how an early outlier rejection in the tracker improves performance in scenes with plenty of occlusions. This outlier rejection scheme is well Slated to implementation on graphics hardware. We evaluate the proposed algorithms using real camera sequences with fine-tuned bundle adjusted data as ground truth. To strenghten oar results we also evaluate using sequences generated by a state-of-the-art rendering software. On average we are able to reduce the number of RANSAC iterations by half and thereby double the speed.DIPLEC

    Self-Calibration of Cameras with Euclidean Image Plane in Case of Two Views and Known Relative Rotation Angle

    Full text link
    The internal calibration of a pinhole camera is given by five parameters that are combined into an upper-triangular 3×33\times 3 calibration matrix. If the skew parameter is zero and the aspect ratio is equal to one, then the camera is said to have Euclidean image plane. In this paper, we propose a non-iterative self-calibration algorithm for a camera with Euclidean image plane in case the remaining three internal parameters --- the focal length and the principal point coordinates --- are fixed but unknown. The algorithm requires a set of N7N \geq 7 point correspondences in two views and also the measured relative rotation angle between the views. We show that the problem generically has six solutions (including complex ones). The algorithm has been implemented and tested both on synthetic data and on publicly available real dataset. The experiments demonstrate that the method is correct, numerically stable and robust.Comment: 13 pages, 7 eps-figure

    Incremental Non-Rigid Structure-from-Motion with Unknown Focal Length

    Full text link
    The perspective camera and the isometric surface prior have recently gathered increased attention for Non-Rigid Structure-from-Motion (NRSfM). Despite the recent progress, several challenges remain, particularly the computational complexity and the unknown camera focal length. In this paper we present a method for incremental Non-Rigid Structure-from-Motion (NRSfM) with the perspective camera model and the isometric surface prior with unknown focal length. In the template-based case, we provide a method to estimate four parameters of the camera intrinsics. For the template-less scenario of NRSfM, we propose a method to upgrade reconstructions obtained for one focal length to another based on local rigidity and the so-called Maximum Depth Heuristics (MDH). On its basis we propose a method to simultaneously recover the focal length and the non-rigid shapes. We further solve the problem of incorporating a large number of points and adding more views in MDH-based NRSfM and efficiently solve them with Second-Order Cone Programming (SOCP). This does not require any shape initialization and produces results orders of times faster than many methods. We provide evaluations on standard sequences with ground-truth and qualitative reconstructions on challenging YouTube videos. These evaluations show that our method performs better in both speed and accuracy than the state of the art.Comment: ECCV 201

    A pp-adic RanSaC algorithm for stereo vision using Hensel lifting

    Full text link
    A pp-adic variation of the Ran(dom) Sa(mple) C(onsensus) method for solving the relative pose problem in stereo vision is developped. From two 2-adically encoded images a random sample of five pairs of corresponding points is taken, and the equations for the essential matrix are solved by lifting solutions modulo 2 to the 2-adic integers. A recently devised pp-adic hierarchical classification algorithm imitating the known LBG quantisation method classifies the solutions for all the samples after having determined the number of clusters using the known intra-inter validity of clusterings. In the successful case, a cluster ranking will determine the cluster containing a 2-adic approximation to the "true" solution of the problem.Comment: 15 pages; typos removed, abstract changed, computation error remove

    Hybrid Focal Stereo Networks for Pattern Analysis in Homogeneous Scenes

    Full text link
    In this paper we address the problem of multiple camera calibration in the presence of a homogeneous scene, and without the possibility of employing calibration object based methods. The proposed solution exploits salient features present in a larger field of view, but instead of employing active vision we replace the cameras with stereo rigs featuring a long focal analysis camera, as well as a short focal registration camera. Thus, we are able to propose an accurate solution which does not require intrinsic variation models as in the case of zooming cameras. Moreover, the availability of the two views simultaneously in each rig allows for pose re-estimation between rigs as often as necessary. The algorithm has been successfully validated in an indoor setting, as well as on a difficult scene featuring a highly dense pilgrim crowd in Makkah.Comment: 13 pages, 6 figures, submitted to Machine Vision and Application

    A New Solution to the Relative Orientation Problem using only 3 Points and the Vertical Direction

    Get PDF
    This paper presents a new method to recover the relative pose between two images, using three points and the vertical direction information. The vertical direction can be determined in two ways: 1- using direct physical measurement like IMU (inertial measurement unit), 2- using vertical vanishing point. This knowledge of the vertical direction solves 2 unknowns among the 3 parameters of the relative rotation, so that only 3 homologous points are requested to position a couple of images. Rewriting the coplanarity equations leads to a simpler solution. The remaining unknowns resolution is performed by an algebraic method using Grobner bases. The elements necessary to build a specific algebraic solver are given in this paper, allowing for a real-time implementation. The results on real and synthetic data show the efficiency of this method

    Model-free Consensus Maximization for Non-Rigid Shapes

    Full text link
    Many computer vision methods use consensus maximization to relate measurements containing outliers with the correct transformation model. In the context of rigid shapes, this is typically done using Random Sampling and Consensus (RANSAC) by estimating an analytical model that agrees with the largest number of measurements (inliers). However, small parameter models may not be always available. In this paper, we formulate the model-free consensus maximization as an Integer Program in a graph using `rules' on measurements. We then provide a method to solve it optimally using the Branch and Bound (BnB) paradigm. We focus its application on non-rigid shapes, where we apply the method to remove outlier 3D correspondences and achieve performance superior to the state of the art. Our method works with outlier ratio as high as 80\%. We further derive a similar formulation for 3D template to image matching, achieving similar or better performance compared to the state of the art.Comment: ECCV1
    corecore