3,519 research outputs found

    How generic language extensions enable ''open-world'' design in Java

    No full text
    By \emph{open--world design} we mean that collaborating classes are so loosely coupled that changes in one class do not propagate to the other classes, and single classes can be isolated and integrated in other contexts. Of course, this is what maintainability and reusability is all about. In the paper, we will demonstrate that in Java even an open--world design of mere attribute access can only be achieved if static safety is sacrificed, and that this conflict is unresolvable \emph{even if the attribute type is fixed}. With generic language extensions such as GJ, which is a generic extension of Java, it is possible to combine static type safety and open--world design. As a consequence, genericity should be viewed as a first--class design feature, because generic language features are preferably applied in many situations in which object--orientedness seems appropriate. We chose Java as the base of the discussion because Java is commonly known and several advanced features of Java aim at a loose coupling of classes. In particular, the paper is intended to make a strong point in favor of generic extensions of Java

    Carbon and oxygen in metal-poor halo stars

    Full text link
    Carbon and oxygen are key tracers of the Galactic chemical evolution; in particular, a reported upturn in [C/O] towards decreasing [O/H] in metal-poor halo stars could be a signature of nucleosynthesis by massive Population III stars. We reanalyse carbon, oxygen, and iron abundances in thirty-nine metal-poor turn-off stars. For the first time, we take into account three-dimensional (3D) hydrodynamic effects together with departures from local thermodynamic equilibrium (LTE) when determining both the stellar parameters and the elemental abundances, by deriving effective temperatures from 3D non-LTE Hβ\beta profiles, surface gravities from Gaia parallaxes, iron abundances from 3D LTE Feii equivalent widths, and carbon and oxygen abundances from 3D non-LTE Ci and Oi equivalent widths. We find that [C/Fe] stays flat with [Fe/H], whereas [O/Fe] increases linearly up to 0.750.75 dex with decreasing [Fe/H] down to −3.0-3.0 dex. As such [C/O] monotonically decreases towards decreasing [O/H], in contrast to previous findings, mainly by virtue of less severe non-LTE effects for Oi at low [Fe/H] with our improved calculations.Comment: 5 pages, 2 figures; published in A&A Letter

    Towards a better representation of the solar cycle in general circulation models

    Get PDF
    We introduce the improved Freie Universität Berlin (FUB) high-resolution radiation scheme FUBRad and compare it to the 4-band standard ECHAM5 SW radiation scheme of Fouquart and Bonnel (FB). Both schemes are validated against the detailed radiative transfer model libRadtran. FUBRad produces realistic heating rate variations during the solar cycle. The SW heating rate response with the FB scheme is about 20 times smaller than with FUBRad and cannot produce the observed temperature signal. A reduction of the spectral resolution to 6 bands for solar irradiance and ozone absorption cross sections leads to a degradation (reduction) of the solar SW heating rate signal by about 20%. The simulated temperature response agrees qualitatively well with observations in the summer upper stratosphere and mesosphere where irradiance variations dominate the signal. Comparison of the total short-wave heating rates under solar minimum conditions shows good agreement between FUBRad, FB and libRadtran up to the middle mesosphere (60–70 km) indicating that both parameterizations are well suited for climate integrations that do not take solar variability into account. The FUBRad scheme has been implemented as a sub-submodel of the Modular Earth Submodel System (MESSy)

    Si and Mn Abundances in Damped Lya Systems with Low Dust Content

    Full text link
    We have measured the abundances of Zn, Si, Mn, Cr, Fe, and Ni in three damped Lyman alpha systems at redshifts z < 1 from high resolution echelle spectra of QSOs recorded with the Keck I telescope. In all three cases the abundances of Cr, Fe, and Ni relative to Zn indicate low levels of dust depletions. We propose that when the proportion of refractory elements locked up in dust grains is less than about 50 percent, it is plausible to assume an approximately uniform level of depletion for all grain constituents and, by applying a small dust correction, recover the intrisic abundances of Si and Mn. We use this approach on a small sample of damped systems for which it is appropriate, with the aim of comparing the metallicity dependence of the ratios [Si/Fe] and [Mn/Fe] with analogous measurements in Milky Way stars. The main conclusion is that the relative abundances of both elements in distant galaxies are broadly in line with expectations based on Galactic data. Si displays a mild enhancement at low metallicities, as expected for an alpha-capture element, but there are also examples of near-solar [Si/Fe] at [Fe/H] < -1. The underabundance of Mn at low metallicities is possibly even more pronounced than that in metal-poor stars, and no absorption system has yet been found where [Mn/Fe] is solar. The heterogeneous chemical properties of damped Lyman alpha systems, evident even from this limited set of measurements, provide further support for the conclusion from imaging studies that a varied population of galaxies gives rise to this class of QSO absorbers.Comment: 29 pages, LaTex, 7 Postscript Figures. Accepted for Publication in the Astrophysical Journa

    IVUS-based imaging modalities for tissue characterization: similarities and differences

    Get PDF
    Gray-scale intravascular ultrasound (IVUS) is the modality that has been established as the golden standard for in vivo imaging of the vessel wall of the coronary arteries. The use of IVUS in clinical practice is an important diagnostic tool used for quantitative assessment of coronary artery disease. This has made IVUS the de-facto invasive imaging method to evaluate new interventional therapies such as new stent designs and for atherosclerosis progression-regression studies. However, the gray-scale representation of the coronary vessel wall and plaque morphology in combination with the limited resolution of the current IVUS catheters makes it difficult, if not impossible, to identify qualitatively (e.g. visually) the plaque morphology similar as that of histopathology, the golden standard to characterize and quantify coronary plaque tissue components. Meanwhile, this limitation has been partially overcome by new innovative IVUS-based post-processing methods such as: virtual histology IVUS (VH-IVUS, Volcano Therapeutics, Rancho Cordova, CA, USA), iMAP-IVUS (Bostoc Scientific, Santa Clara, CA, USA), Integrated Backscatter IVUS (IB-IVUS) and Automated Differential Echogenicity (ADE)

    The [Y/Mg] clock works for evolved solar metallicity stars

    Get PDF
    Previously [Y/Mg] has been proven to be an age indicator for solar twins. Here, we investigate if this relation also holds for helium-core-burning stars of solar metallicity. High resolution and high signal-to-noise ratio (S/N) spectroscopic data of stars in the helium-core-burning phase have been obtained with the FIES spectrograph on the NOT 2.56m telescope and the HIRES spectrograph on the Keck I 10 m telescope. They have been analyzed to determine the chemical abundances of four open clusters with close to solar metallicity; NGC 6811, NGC 6819, M67 and NGC 188. The abundances are derived from equivalent widths of spectral lines using ATLAS9 model atmospheres with parameters determined from the excitation and ionization balance of Fe lines. Results from asteroseismology and binary studies were used as priors on the atmospheric parameters, where especially the log⁥g\log g is determined to much higher precision than what is possible with spectroscopy. It is confirmed that the four open clusters are close to solar metallicity and they follow the [Y/Mg] vs. age trend previously found for solar twins. The [Y/Mg] vs. age clock also works for giant stars in the helium-core burning phase, which vastly increases the possibilities to estimate the age of stars not only in the solar neighborhood, but in large parts of the Galaxy, due to the brighter nature of evolved stars compared to dwarfs.Comment: 5 pages, 3 figures, accepted for publication as a Letter to A&

    Symmetric Operation of the Resonant Exchange Qubit

    Full text link
    We operate a resonant exchange qubit in a highly symmetric triple-dot configuration using IQ-modulated RF pulses. At the resulting three-dimensional sweet spot the qubit splitting is an order of magnitude less sensitive to all relevant control voltages, compared to the conventional operating point, but we observe no significant improvement in the quality of Rabi oscillations. For weak driving this is consistent with Overhauser field fluctuations modulating the qubit splitting. For strong driving we infer that effective voltage noise modulates the coupling strength between RF drive and the qubit, thereby quickening Rabi decay. Application of CPMG dynamical decoupling sequences consisting of up to n = 32 {\pi} pulses significantly prolongs qubit coherence, leading to marginally longer dephasing times in the symmetric configuration. This is consistent with dynamical decoupling from low frequency noise, but quantitatively cannot be explained by effective gate voltage noise and Overhauser field fluctuations alone. Our results inform recent strategies for the utilization of partial sweet spots in the operation and long-distance coupling of triple-dot qubits.Comment: 6 pages, 5 figure

    Negative spin exchange in a multielectron quantum dot

    Full text link
    By operating a one-electron quantum dot (fabricated between a multielectron dot and a one-electron reference dot) as a spectroscopic probe, we study the spin properties of a gate-controlled multielectron GaAs quantum dot at the transition between odd and even occupation number. We observe that the multielectron groundstate transitions from spin-1/2-like to singlet-like to triplet-like as we increase the detuning towards the next higher charge state. The sign reversal in the inferred exchange energy persists at zero magnetic field, and the exchange strength is tunable by gate voltages and in-plane magnetic fields. Complementing spin leakage spectroscopy data, the inspection of coherent multielectron spin exchange oscillations provides further evidence for the sign reversal and, inferentially, for the importance of non-trivial multielectron spin exchange correlations.Comment: 8 pages, including 4 main figures and 2 supplementary figurure

    Constraints on Early Nucleosynthesis from the Abundance Pattern of a Damped Ly-alpha System at z = 2.626

    Full text link
    We have investigated chemical evolution in the young universe by analysing the detailed chemical enrichment pattern of a metal-rich galaxy at high redshift. The recent detection of over 20 elements in the gas-phase of a damped Lyman-alpha absorber (DLA) at z = 2.626 represents an exciting new avenue for exploring early nucleosynthesis. Given a strict upper age of ~2.5 Gyr and a gas-phase metallicity about one third solar, we have shown the DLA abundance pattern to be consistent with the predictions of a chemical evolution model in which the interstellar enrichment is dominated by massive stars with a small contribution from Type Ia supernovae. Discrepancies between the empirical data and the models are used to highlight outstanding issues in nucleosynthesis theory, including a tendency for Type II supernovae models to overestimate the magnitude of the "odd-even" effect at subsolar metallicities. Our results suggest a possible need for supplemental sources of magnesium and zinc, beyond that provided by massive stars.Comment: 12 pages, 7 figs. Accepted for publication in ApJ (The Astrophysical Journal

    Light Scattering and Electron Microscopy Study of the Surface Morphology of GaAs Films Grown by Molecular Beam Epitaxy

    Get PDF
    The surface morphology of thermally quenched GaAs films grown by molecular beam epitaxy on GaAs substrates has been studied by elastic light scattering, by scanning electron microscopy and by scanning tunneling microscopy (STM) in air. STM shows that the oxide-desorbed surface of GaAs is pitted, but smooths after deposition of a few hundred nanometers of material. Light scattering shows that, after the surface has smoothed, the power spectral density of the surface approaches a q-2 dependence on spatial frequency over the spatial frequency range 0.2 Îźm-1 \u3c q \u3c 20 Îźm-1 that is accessible to the light scattering measurements at 488 nm. This result is in agreement with the predictions of dynamical scaling theory in the case where the time evolution of the surface morphology is described by an Edwards-Wilkinson type equation
    • …
    corecore