90 research outputs found

    WKB approach and quantum corrections to classical dynamics in the Josephson problem

    Full text link
    We apply a many-body Wentzel-Kramers-Brillouin (WKB) approach to determine the leading quantum corrections to the semiclassical dynamics of the Josephson model, describing interacting bosons able to tunnel between two localized states. The semiclassical dynamics is known to divide between regular oscillations and self-trapped oscillations where the sign of the imbalance remains fixed. In both cases, the WKB wave functions are matched to Airy functions, yielding a modified Bohr-Sommerfeld quantization condition. At the critical energy dividing normal and self-trapped oscillations, the WKB wave functions should instead be matched to parabolic cylinder functions, leading to a quantization formula that is not just the Bohr-Sommerfeld formula, and recovering the known logarithmic quantum break times at this energy. This work thus provides another illustration of the usefulness of the WKB approach in certain many-body problems.Comment: references updated, introduction re-writte

    Non-equilibrium dynamics of coupled qubit-cavity arrays

    Get PDF
    We study the coherence and fluorescence properties of the coherently pumped and dissipative Jaynes-Cummings-Hubbard model describing polaritons in a coupled-cavity array. At weak hopping we find strong signatures of photon blockade similar to single-cavity systems. At strong hopping the state of the photons in the array depends on its size. While the photon blockade persists in a dimer consisting of two coupled cavities, a coherent state forms on an extended lattice, which can be described in terms of a semi-classical model

    Methyl 1-(7-acetamido-5,8-dimeth­oxy­quinolin-2-yl)-4-methyl-β-carboline-3-carboxyl­ate

    Get PDF
    The title compound, C27H24N4O5, is an inter­mediate in the synthesis of lavendamycin via a ruthenium-catalysed [2 + 2 + 2] cyclo­addition. An intra­molecular hydrogen-bond bridge from the carboline to the quinoline stabilizes a highly planar geometry [maximum deviation = 0.065 (6) Å] for the two rigid units. This hydrogen-bond-stabilized coplanarity has a very close analogy in the structure of the anti­tumor anti­biotic streptonigrin in the solid state and in solution. Inter­molecular hydrogen-bond bridges of amides groups along the a axis and π–π stacking inter­actions [centroid–centroid distance = 3.665 (9) Å] connect mol­ecules arranged in a parallel manner

    Mammary gland-derived nestin-positive cell populations can be isolated from human male and female donors

    Get PDF
    INTRODUCTION: Nestin-expressing cells isolated from different human tissues reveal self-renewal capacity and a multilineage differentiation potential. In particular, adult stem/progenitor cell populations from exocrine glands such as the pancreas, salivary gland and sweat gland are characterized by prominent nestin expression. Interestingly, human mammary gland histological examinations also demonstrated the existence of nestin-positive cells in the ductal compartments. Within the scope of our previous work we wonder whether an isolation of nestin-positive cell populations from human mammary gland biopsies is possible and what characteristics they have in vitro. Cell populations from both sexes were propagated and subjected to a comparison with other gland-derived cell populations. METHODS: Human mammary tissue biopsies were mechanically and enzymatically treated, and the isolated acini structures were observed with time-lapse microscopy to track adherently outgrowing cells. The proliferation potential of the cell population was assessed by performing growth curves. On the gene and protein levels we investigated the expression of stem cell markers as well as markers indicating multilineage differentiation. RESULTS: We succeeded in establishing proliferating cell populations from breast tissue biopsies of both sexes. Our results display several similarities to the glandular stem cell populations from other exocrine glands. Beside their proliferation capacity during in vitro culture, the obtained cell populations are characterized by their prominent nestin expression. The cells share surface proteins commonly expressed on adult stem cells. We demonstrated the expression of stem cell-related genes like Oct4, Sox2, KLF4 and Nanog, and confirmed multipotent differentiation capacity by detecting transcripts expressed in endodermal, mesodermal and ectodermal cell types. CONCLUSION: With this study we present an efficient procedure for isolation and propagation of nestin-positive stem cells obtained from male and female breast tissue, which is frequently available. The established multipotent cell populations could be easily expanded in vitro and thus hold promise for cell-based therapies and personalized medicine

    Fermentative oxidation of butane in bubble column reactors

    Get PDF
    To date the use of alkanes as starting materials for selective activation in chemical industry is very challenging. For this task the biocatalytic selective activation offers a number of advantages. The activation starts with C-H functionalization by a sequence of oxidation steps via alcohols, aldehydes/ ketones and carboxylic acids. All these derivatives are bulk-scale products, which are produced with standard chemical methods using high pressures and temperatures. In contrast, microorganisms are able to convert alkanes to various organic compounds at ambient pressure and temperature.[1] For the selective and efficient functionalization of alkanes appropriate fermentation of cells is required. Process engineering is required for a high yielding butane oxidation as well as reactor design. In this context it is essential to investigate the parameters of cell growth and to establish control of the fermentation conditions for production of the hydroxylated target compounds. At first a suitable reactor set up in accordance to the safety regulations required for handling a flammable gas like butane had to be installed to enable reaction engineering studies of the cell and reactor system. Specialized bubble column reactors are developed on lab scale and characterized in view of the implementation at industrial scale.[2] Additionally, a suitable control system was designed to monitor as well as control standard parameters and to simplify the implementation of further equipment. The mass transfer of the gaseous starting materials into the fermentation media is the key limiting factor for reaching sufficient productivities. The process window is mainly restricted by the requirements of the microorganisms and the flammability region of the substrates. Please click Additional Files below to see the full abstract

    Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases

    Get PDF
    Phytocystatins are inhibitors of cysteine-proteases from plants putatively involved in plant defence based on their capability of inhibit heterologous enzymes. We have previously characterised the whole cystatin gene family members from barley (HvCPI-1 to HvCPI-13). The aim of this study was to assess the effects of barley cystatins on two phytophagous spider mites, Tetranychus urticae and Brevipalpus chilensis. The determination of proteolytic activity profile in both mite species showed the presence of the cysteine-proteases, putative targets of cystatins, among other enzymatic activities. All barley cystatins, except HvCPI-1 and HvCPI-7, inhibited in vitro mite cathepsin L- and/or cathepsin B-like activities, HvCPI-6 being the strongest inhibitor for both mite species. Transgenic maize plants expressing HvCPI-6 protein were generated and the functional integrity of the cystatin transgene was confirmed by in vitro inhibitory effect observed against T. urticae and B. chilensis protein extracts. Feeding experiments impaired on transgenic lines performed with T. urticae impaired mite development and reproductive performance. Besides, a significant reduction of cathepsin L-like and/or cathepsin B-like activities was observed when the spider mite fed on maize plants expressing HvCPI-6 cystatin. These findings reveal the potential of barley cystatins as acaricide proteins to protect plants against two important mite pests

    The Effect of Aggressive Versus Conventional Lipid-lowering Therapy on Markers of Inflammatory and Oxidative Stress

    Get PDF
    Purpose Recent trial results are in favor of aggressive lipid lowering using high dose statins in patients needing secondary prevention. It is unclear whether these effects are solely due to more extensive lipid lowering or the result of the potentially anti-inflammatory properties of statins. We aimed to determine whether aggressive compared with conventional statin therapy is more effective in reducing systemic markers of inflammation and oxidative stress. Materials and methods This was a multi-centre, double-blind, placebo-controlled trial. Patients with previous cardiovascular disease, who did not achieve low density lipoprotein (LDL) cholesterol levels <2.6 mmol/l on conventional statin therapy (simvastatin 40 mg) were randomized to continue with simvastatin 40 mg or to receive atorvastatin 40 mg for 8 weeks and thereafter atorvastatin 80 mg for the final 8 weeks (aggressive treatment). Lipids, C-reactive protein, soluble cellular adhesion molecules, neopterin, von Willebrand Factor, and antibodies against oxidized LDL were measured at baseline and after 16 weeks. Results Lipid levels decreased significantly in the aggressive treatment group (LDL-C reduction 20.8%; P <0.001), whereas a slight increase was observed in the conventional group (LDL-C increase 3.7%; P = 0.037). A significant reduction in antibodies against oxidized LDL was seen in the aggressive (13.4%; P <0.001) and the conventional (26.8%; P <0.001) group, but there was no difference between groups (P = 0.25). Furthermore, no significant differences in change in other biomarkers was observed between both groups. Conclusions This study does not support the hypothesis that a more profound reduction in inflammatory and oxidative stress contributes to the benefits of aggressive statin therapy

    Optimization of a Novel Peptide Ligand Targeting Human Carbonic Anhydrase IX

    Get PDF
    BACKGROUND: Carbonic anhydrase IX (CA IX) is a hypoxia-regulated transmembrane protein over-expressed in various types of human cancer. Recently, a new peptide with affinity for human carbonic anhydrase IX (CaIX-P1) was identified using the phage display technology. Aim of the present study is to characterize the binding site in the sequence of CaIX-P1, in order to optimize the binding and metabolic properties and use it for targeting purposes. METHODOLOGY/PRINCIPAL FINDINGS: Various fragments of CaIX-P1 were synthesized on solid support using Fmoc chemistry. Alanine scanning was performed for identification of the amino acids crucial for target binding. Derivatives with increased binding affinity were radiolabeled and in vitro studies were carried out on the CA IX positive human renal cell carcinoma cell line SKRC 52 and the CA IX negative human pancreatic carcinoma cell line BxPC3. Metabolic stability was investigated in cell culture medium and human serum. Organ distribution and planar scintigraphy studies were performed in Balb/c nu/nu mice carrying subcutaneously transplanted SKRC 52 tumors. The results of our studies clearly identified amino acids that are important for target binding. Among various fragments and derivatives the ligand CaIX-P1-4-10 (NHVPLSPy) was found to possess increased binding potential in SKRC 52 cells, whereas no binding capacity for BxPC3 cells was observed. Binding of radiolabeled CaIX-P1-4-10 on CA IX positive cells could be inhibited by both the unlabeled and the native CaIX-P1 peptide but not by control peptides. Stability experiments indicated the degradation site in the sequence of CaIX-P1-4-10. Biodistribution studies showed a higher in vivo accumulation in the tumor than in most healthy tissues. CONCLUSIONS: Our data reveal modifications in the sequence of the CA IX affine ligand CaIX-P1 that might be favorable for improvement of target affinity and metabolic stability, which are necessary prior to the use of the ligand in clinical approaches

    Pseudomonas Evades Immune Recognition of Flagellin in Both Mammals and Plants

    Get PDF
    The building blocks of bacterial flagella, flagellin monomers, are potent stimulators of host innate immune systems. Recognition of flagellin monomers occurs by flagellin-specific pattern-recognition receptors, such as Toll-like receptor 5 (TLR5) in mammals and flagellin-sensitive 2 (FLS2) in plants. Activation of these immune systems via flagellin leads eventually to elimination of the bacterium from the host. In order to prevent immune activation and thus favor survival in the host, bacteria secrete many proteins that hamper such recognition. In our search for Toll like receptor (TLR) antagonists, we screened bacterial supernatants and identified alkaline protease (AprA) of Pseudomonas aeruginosa as a TLR5 signaling inhibitor as evidenced by a marked reduction in IL-8 production and NF-κB activation. AprA effectively degrades the TLR5 ligand monomeric flagellin, while polymeric flagellin (involved in bacterial motility) and TLR5 itself resist degradation. The natural occurring alkaline protease inhibitor AprI of P. aeruginosa blocked flagellin degradation by AprA. P. aeruginosa aprA mutants induced an over 100-fold enhanced activation of TLR5 signaling, because they fail to degrade excess monomeric flagellin in their environment. Interestingly, AprA also prevents flagellin-mediated immune responses (such as growth inhibition and callose deposition) in Arabidopsis thaliana plants. This was due to decreased activation of the receptor FLS2 and clearly demonstrated by delayed stomatal closure with live bacteria in plants. Thus, by degrading the ligand for TLR5 and FLS2, P. aeruginosa escapes recognition by the innate immune systems of both mammals and plants
    corecore