124 research outputs found

    Drop on a Bent Fibre

    Full text link
    Inspired by the huge droplets attached on cypress tree leaf tips after rain, we find that a bent fibre can hold significantly more water in the corner than a horizontally placed fibre (typically up to three times or more). The maximum volume of the liquid that can be trapped is remarkably affected by the bending angle of the fibre and surface tension of the liquid. We experimentally find the optimal included angle (36\sim {36}{^\circ}) that holds the most water. Analytical and semi-empirical models are developed to explain these counter-intuitive experimental observations and predict the optimal angle. The data and models could be useful for designing microfluidic and fog harvesting devices

    Transcriptome Analyses of a Salt-Tolerant Cytokinin-Deficient Mutant Reveal Differential Regulation of Salt Stress Response by Cytokinin Deficiency

    Get PDF
    Soil destruction by abiotic environmental conditions, such as high salinity, has resulted in dramatic losses of arable land, giving rise to the need of studying mechanisms of plant adaptation to salt stress aimed at creating salt-tolerant plants. Recently, it has been reported that cytokinins (CKs) regulate plant environmental stress responses through two-component systems. A decrease in endogenous CK levels could enhance salt and drought stress tolerance. Here, we have investigated the global transcriptional change caused by a reduction in endogenous CK content under both normal and salt stress conditions. Ten-day-old Arabidopsis thaliana wild-type (WT) and CK-deficient ipt1,3,5,7 plants were transferred to agar plates containing either 0 mM (control) or 200 mM NaCl and maintained at normal growth conditions for 24 h. Our experimental design allowed us to compare transcriptome changes under four conditions: WT-200 mM vs. WT-0 mM, ipt1,3,5,7-0 mM vs. WT-0 mM, ipt1,3,5,7-200 mM vs. ipt1,3,5,7-0 mM and ipt1,3,5,7-200 mM vs. WT-200 mM NaCl. Our results indicated that the expression of more than 10% of all of the annotated Arabidopsis genes was altered by CK deficiency under either normal or salt stress conditions when compared to WT. We found that upregulated expression of many genes encoding either regulatory proteins, such as NAC, DREB and ZFHD transcription factors and the calcium sensor SOS3, or functional proteins, such as late embryogenesis-abundant proteins, xyloglucan endo-transglycosylases, glycosyltransferases, glycoside hydrolases, defensins and glyoxalase I family proteins, may contribute to improved salt tolerance of CK-deficient plants. We also demonstrated that the downregulation of photosynthesis-related genes and the upregulation of several NAC genes may cause the altered morphological phenotype of CK-deficient plants. This study highlights the impact of CK regulation on the well-known stress-responsive signaling pathways, which regulate plant adaptation to high salinity as well as other environmental stresses

    Isorhamnetin Promotes 53BP1 Recruitment through the Enhancement of ATM Phosphorylation and Protects Mice from Radiation Gastrointestinal Syndrome

    Get PDF
    Flavonoids are a subclass of polyphenols which are attractive, due to possessing various physiological activities, including a radioprotective effect. Tumor suppressor p53 is a primary regulator in the radiation response and is involved in the pathogenesis of radiation injuries. In this study, we revealed that isorhamnetin inhibited radiation cell death, and investigated its action mechanism focusing on DNA damage response. Although isorhamnetin moderated p53 activity, it promoted phosphorylation of ataxia telangiectasia mutated (ATM) and enhanced 53BP1 recruitment in irradiated cells. The radioprotective effect of isorhamnetin was not observed in the presence of ATM inhibitor, indicating that its protective effect was dependent on ATM. Furthermore, isorhamnetin-treated mice survived gastrointestinal death caused by a lethal dose of abdominal irradiation. These findings suggested that isorhamnetin enhances the ATM-dependent DNA repair process, which is presumably associated with the suppressive effect against GI syndrome

    Genome assembly and annotation ofArabidopsis halleri, a model for heavy metal hyperaccumulation and evolutionary ecology

    Full text link
    The self-incompatible species Arabidopsis halleri is a close relative of the self-compatible model plant Arabidopsis thaliana. The broad European and Asian distribution and heavy metal hyperaccumulation ability makes A. halleri a useful model for ecological genomics studies.We used long-insert mate-pair libraries to improve the genome assembly of the A. halleri ssp.gemmifera Tada mine genotype (W302) collected from a site with high contamination by heavy metals in Japan. After five rounds of forced selfing, heterozygosity was reduced to 0.04%, which facilitated subsequent genome assembly. Our assembly now covers 196 Mb or 78% of the estimated genome size and achieved scaffold N50 length of 712 kb. To validate assembly and annotation, we used synteny of A. halleri Tada mine with a previously published high quality reference assembly of a closely related species, Arabidopsis lyrata. Further validation of the assembly quality comes from synteny and phylogenetic analysis of the HEAVY METAL ATPASE4 (HMA4) and METAL TOLERANCE PROTEIN1 (MTP1) regions using published sequences from European A. halleri for comparison. Three tandemly duplicated copies of HMA4, key gene involved in cadmium and zinc hyperaccumulation, were assembled on a single scaffold.The assembly will enhance the genome-wide studies of A. halleri as well as the allopolyploid Arabidopsis kamchatica derived from A. lyrata and A. halleri

    Upshaw-Schulman症候群の糸球体障害には補体活性とADAMTS13欠損が関連している可能性がある

    Get PDF
    Introduction: Upshaw-Schulman syndrome (USS) is a congenital form of thrombotic thrombocytopenic purpura (TTP) associated with loss-of-function mutations in the ADAMTS13 gene, possibly leading to aberrant complement activation and vascular injury. However, USS is extremely rare, and there have been no systematic studies correlating histopathological severity with local ADAMTS13 expression and complement activation. Materials and methods: Here, we compared histopathological features, ADAMTS13 immunoreactivity, and immunoreactivity of complement proteins C4d and C5b-9 among renal biopsy tissues from five USS cases, ten acquired TTP cases, and eleven controls. Results: Pathological analysis revealed chronic glomerular sclerotic changes in the majority of USS cases (4 of 5), with minor glomerular pathology in the remaining case. In two of these four severe cases, more than half of the glomerular segmental sclerosis area was localized in the perihilar region. The average number of ADAMTS13-positive cells per glomerulus was significantly lower in USS cases than controls (p < 0.05). Conversely, C4d staining was significantly more prevalent in the glomerular capillary walls of USS cases than controls (p < 0.05), while C5b-9 staining did not differ significantly among groups. Conclusions: These findings suggest that the severity of glomerular injury in USS is associated with deficient ADAMTS13 expression and local complement activation, particularly in vascular regions with higher endothelial shear stress. We suggest that C4d immunostaining provides evidence for complement-mediated glomerular damage in USS.博士(医学)・甲第792号・令和3年3月15日Copyright © 2018 Elsevier Ltd. All rights reserved

    Unhealthy food intake restriction awareness and mortality

    Get PDF
    Background: Improving diets requires an awareness of the need to limit foods for which excessive consumption is a health problem. Since there are limited reports on the link between this awareness and mortality risk, we examined the association between awareness of limiting food intake (energy, fat, and sweets) and all-cause mortality in a Japanese cohort study. Methods: Participants comprised 58,772 residents (27,294 men; 31,478 women) aged 35–69 years who completed baseline surveys of the Japan Multi-Institutional Collaborative Cohort Study from 2004 to 2014. Hazard ratios (HRs) for all-cause mortality and 95% confidence intervals (CIs) were estimated by sex using a Cox proportional hazard model, with adjustment for related factors. Mediation analysis with fat intake as a mediator was also conducted. Results: The mean follow-up period was 11 years and 2,516 people died. Estimated energy and fat intakes according to the Food Frequency Questionnaire were lower in those with awareness of limiting food intake than in those without this awareness. Women with awareness of limiting fat intake showed a significant decrease in mortality risk (HR=0.73; 95% CI, 0.55 to 0.94). Mediation analysis revealed that this association was due to the direct effect of the awareness of limiting fat intake and that the total effect was not mediated by actual fat intake. Awareness of limiting energy or sweets intake was not related to mortality risk reduction. Conclusion: Awareness of limiting food intake had a limited effect on reducing all-cause mortality risk

    Mendelian Randomization on hs-CRP and eGFR

    Get PDF
    Background: Inflammation is thought to be a risk factor for kidney disease. However, whether inflammatory status is either a cause or an outcome of chronic kidney disease remains controversial. We aimed to investigate the causal relationship between high-sensitivity C-reactive protein (hs-CRP) and estimated glomerular filtration rate (eGFR) using Mendelian randomization (MR) approaches. Methods: A total of 10,521 participants of the Japan Multi-institutional Collaborative Cohort Study was analyzed in this study. We used two-sample MR approaches (the inverse-variance weighted (IVW), the weighted median (WM), and the MR-Egger method) to estimate the effect of genetically determined hs-CRP on kidney function. We selected four and three hs-CRP associated single nucleotide polymorphisms (SNPs) as two instrumental variables (IV): IVCRP and IVAsian, based on SNPs previously identified in European and Asian populations. IVCRP and IVAsian explained 3.4% and 3.9% of the variation in hs-CRP, respectively. Results: Using the IVCRP, genetically determined hs-CRP was not significantly associated with eGFR in the IVW and the WM methods (estimate per 1 unit increase in ln(hs-CRP), 0.000; 95% confidence interval [CI], −0.019 to 0.020 and −0.003; 95% CI, −0.019 to 0.014, respectively). For IVAsian, we found similar results using the IVW and the WM methods (estimate, 0.005; 95% CI, −0.020 to 0.010 and −0.004; 95% CI, −0.020 to 0.012, respectively). The MR-Egger method also showed no causal relationships between hs-CRP and eGFR (IVCRP: −0.008; 95% CI, −0.058 to 0.042; IVAsian: 0.001; 95% CI, −0.036 to 0.036). Conclusion: Our two-sample MR analyses with different IVs did not support a causal effect of hs-CRP on eGFR

    Genome-wide meta-analysis identifies multiple novel loci associated with serum uric acid levels in Japanese individuals

    Get PDF
    Gout is a common arthritis caused by elevated serum uric acid (SUA) levels. Here we investigated loci influencing SUA in a genome-wide meta-analysis with 121,745 Japanese subjects. We identified 8948 variants at 36 genomic loci (P<5 × 10–8) including eight novel loci. Of these, missense variants of SESN2 and PNPLA3 were predicted to be damaging to the function of these proteins; another five loci—TMEM18, TM4SF4, MXD3-LMAN2, PSORS1C1-PSORS1C2, and HNF4A—are related to cell metabolism, proliferation, or oxidative stress; and the remaining locus, LINC01578, is unknown. We also identified 132 correlated genes whose expression levels are associated with SUA-increasing alleles. These genes are enriched for the UniProt transport term, suggesting the importance of transport-related genes in SUA regulation. Furthermore, trans-ethnic meta-analysis across our own meta-analysis and the Global Urate Genetics Consortium has revealed 15 more novel loci associated with SUA. Our findings provide insight into the pathogenesis, treatment, and prevention of hyperuricemia/gout

    ICF, An Immunodeficiency Syndrome: DNA Methyltransferase 3B Involvement, Chromosome Anomalies, and Gene Dysregulation

    Get PDF
    The immunodeficiency, centromeric region instability, and facial anomalies syndrome (ICF) is the only disease known to result from a mutated DNA methyltransferase gene, namely, DNMT3B. Characteristic of this recessive disease are decreases in serum immunoglobulins despite the presence of B cells and, in the juxtacentromeric heterochromatin of chromosomes 1 and 16, chromatin decondensation, distinctive rearrangements, and satellite DNA hypomethylation. Although DNMT3B is involved in specific associations with histone deacetylases, HP1, other DNMTs, chromatin remodelling proteins, condensin, and other nuclear proteins, it is probably the partial loss of catalytic activity that is responsible for the disease. In microarray experiments and real-time RT-PCR assays, we observed significant differences in RNA levels from ICF vs. control lymphoblasts for pro- and anti-apoptotic genes (BCL2L10, CASP1, and PTPN13); nitrous oxide, carbon monoxide, NF-κB, and TNFa signalling pathway genes (PRKCH, GUCY1A3, GUCY1B3, MAPK13; HMOX1, and MAP4K4); and transcription control genes (NR2F2 and SMARCA2). This gene dysregulation could contribute to the immunodeficiency and other symptoms of ICF and might result from the limited losses of DNA methylation although ICF-related promoter hypomethylation was not observed for six of the above examined genes. We propose that hypomethylation of satellite 2at1qh and 16qh might provoke this dysregulation gene expression by trans effects from altered sequestration of transcription factors, changes in nuclear architecture, or expression of noncoding RNAs

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
    corecore