65 research outputs found

    A plague on five of your houses - statistical re-assessment of three pneumonic plague outbreaks that occurred in Suffolk, England, between 1906 and 1918

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plague is a re-emerging disease and its pneumonic form is a high priority bio-terrorist threat. Epidemiologists have previously analysed historical outbreaks of pneumonic plague to better understand the dynamics of infection, transmission and control. This study examines 3 relatively unknown outbreaks of pneumonic plague that occurred in Suffolk, England, during the first 2 decades of the twentieth century.</p> <p>Methods</p> <p>The Kolmogorov-Smirnov statistical test is used to compare the symptomatic period and the length of time between successive cases (i.e. the serial interval) with previously reported values. Consideration is also given to the case fatality ratio, the average number of secondary cases resulting from each primary case in the observed minor outbreaks (termed <it>R</it><sub><it>minor</it></sub>), and the proportion of individuals living within an affected household that succumb to pneumonic plague via the index case (i.e. the household secondary attack rate (SAR)).</p> <p>Results</p> <p>2 of the 14 cases survived giving a case fatality ratio of 86% (95% confidence interval (CI) = {57%, 98%}). For the 12 fatal cases, the average symptomatic period was 3.3 days (standard deviation (SD) = 1.2 days) and, for the 11 non index cases, the average serial interval was 5.8 days (SD = 2.0 days). <it>R</it><sub><it>minor </it></sub>was calculated to be 0.9 (SD = 1.0) and, in 2 households, the SAR was approximately 14% (95% CI = {0%, 58%}) and 20% (95% CI = {1%, 72%}), respectively.</p> <p>Conclusions</p> <p>The symptomatic period was approximately 1 day longer on average than in an earlier study but the serial interval was in close agreement with 2 previously reported values. 2 of the 3 outbreaks ended without explicit public health interventions; however, non-professional caregivers were particularly vulnerable - an important public health consideration for any future outbreak of pneumonic plague.</p

    Evaluating Surveillance Strategies for the Early Detection of Low Pathogenicity Avian Influenza Infections

    Get PDF
    In recent years, the early detection of low pathogenicity avian influenza (LPAI) viruses in poultry has become increasingly important, given their potential to mutate into highly pathogenic viruses. However, evaluations of LPAI surveillance have mainly focused on prevalence and not on the ability to act as an early warning system. We used a simulation model based on data from Italian LPAI epidemics in turkeys to evaluate different surveillance strategies in terms of their performance as early warning systems. The strategies differed in terms of sample size, sampling frequency, diagnostic tests, and whether or not active surveillance (i.e., routine laboratory testing of farms) was performed, and were also tested under different epidemiological scenarios. We compared surveillance strategies by simulating within-farm outbreaks. The output measures were the proportion of infected farms that are detected and the farm reproduction number (Rh). The first one provides an indication of the sensitivity of the surveillance system to detect within-farm infections, whereas Rh reflects the effectiveness of outbreak detection (i.e., if detection occurs soon enough to bring an epidemic under control). Increasing the sampling frequency was the most effective means of improving the timeliness of detection (i.e., it occurs earlier), whereas increasing the sample size increased the likelihood of detection. Surveillance was only effective in preventing an epidemic if actions were taken within two days of sampling. The strategies were not affected by the quality of the diagnostic test, although performing both serological and virological assays increased the sensitivity of active surveillance. Early detection of LPAI outbreaks in turkeys can be achieved by increasing the sampling frequency for active surveillance, though very frequent sampling may not be sustainable in the long term. We suggest that, when no LPAI virus is circulating yet and there is a low risk of virus introduction, a less frequent sampling approach might be admitted, provided that the surveillance is intensified as soon as the first outbreak is detected

    Constraints from muon g-2 and LFV processes in the Higgs Triplet Model

    Full text link
    Constraints from the muon anomalous magnetic dipole moment and lepton flavor violating processes are translated into lower bounds on v_Delta*m_H++ in the Higgs Triplet Model by considering correlations through the neutrino mass matrix. The discrepancy of the sign of the contribution to the muon anomalous magnetic dipole moment between the measurement and the prediction in the model is clarified. It is shown that mu to e gamma, tau decays (especially, tau to mu e e), and the muonium conversion can give a more stringent bound on v_Delta*m_H++ than the bound from mu to eee which is expected naively to give the most stringent one.Comment: 18 pages, 16 figure

    Melioidosis Vaccines: A Systematic Review and Appraisal of the Potential to Exploit Biodefense Vaccines for Public Health Purposes

    Get PDF
    The designation of Burkholderia pseudomallei as a category B select agent has resulted in considerable research funding to develop a protective vaccine. This bacterium also causes a naturally occurring disease (melioidosis), an important cause of death in many countries including Thailand and Australia. In this study, we explored whether a vaccine could be used to provide protection from melioidosis. An economic evaluation based on its use in Thailand indicated that a vaccine could be a cost-effective intervention if used in high-risk populations such as diabetics and those with chronic kidney or lung disease. A literature search of vaccine studies in animal models identified the current candidates, but noted that models failed to take account of the common routes of infection in natural melioidosis and major risk factors for infection, primarily diabetes. This review highlights important areas for future research if biodefence-driven vaccines are to play a role in reducing the global incidence of melioidosis

    Contributing factors affecting the prognosis surgical outcome for thoracic OLF

    Get PDF
    The thoracic ossification of ligamentum flavum (OLF) is a disease that produces spastic paraparesis, and there are various factors that may affect the surgical outcome of thoracic OLF patients. The authors of this study treated 19 of these thoracic OLF patients from 1998 to 2002, and retrospectively reviewed the patients′ age, sex, symptom duration, involved disease level, preoperative clinical features, neurological findings, radiological findings, the other combined spinal diseases and the surgical outcomes. There were excellent or good surgical outcomes in 16 patients, but 3 patients did not improve after thoracic OLF surgery: this included 1 patient, whose motor function worsened after decompressive thoracic OLF surgery. The favorable contributing factors of surgical outcome in thoracic OLF are a short preoperative symptom duration, single-level lesion, and unilateral lesion type on CT axial scan. On the contrary, the poor prognostic factors are beak type lesion and intramedullary signal changes on T2-weighted sagittal MRI. The complete preoperative evaluation including radiologic findings will provide valuable aid in presuming the surgical outcome for the thoracic OLF patients.ope

    Modeling the Dynamic Transmission of Dengue Fever: Investigating Disease Persistence

    Get PDF
    Dengue is the most rapidly spreading mosquito-borne viral disease in the world and approximately 2.5 billion people live in dengue endemic countries. In Brazil it is mainly transmitted by Aedes aegypti mosquitoes. The wide clinical spectrum ranges from asymptomatic infections or mild illness, to the more severe forms of infection such as dengue hemorrhagic fever or dengue shock syndrome. The spread and dramatic increase in the occurrence of dengue cases in tropical and subtropical countries has been blamed on uncontrolled urbanization, population growth and international traveling. Vaccines are under development and the only current disease control strategy is trying to keep the vector quantity at the lowest possible levels. Mathematical models have been developed to help understand the disease's epidemiology. These models aim not only to predict epidemics but also to expand the capacity of phenomena explanation. We developed a spatially explicit model to simulate the dengue transmission in a densely populated area. The model involves the dynamic interactions between humans and mosquitoes and takes into account human mobility as an important factor of disease spread. We investigated the importance of human population size, human renewal rate, household infestation and ratio of vectors per person in the maintenance of sustained viral circulation

    Termination of the leprosy isolation policy in the US and Japan : Science, policy changes, and the garbage can model

    Get PDF
    BACKGROUND: In both the US and Japan, the patient isolation policy for leprosy /Hansen's disease (HD) was preserved along with the isolation facilities, long after it had been proven to be scientifically unnecessary. This delayed policy termination caused a deprivation of civil liberties of the involuntarily confined patients, the fostering of social stigmas attached to the disease, and an inefficient use of health resources. This article seeks to elucidate the political process which hindered timely policy changes congruent with scientific advances. METHODS: Examination of historical materials, supplemented by personal interviews. The role that science played in the process of policy making was scrutinized with particular reference to the Garbage Can model. RESULTS: From the vantage of history, science remained instrumental in all period in the sense that it was not the primary objective for which policy change was discussed or intended, nor was it the principal driving force for policy change. When the argument arose, scientific arguments were employed to justify the patient isolation policy. However, in the early post-WWII period, issues were foregrounded and agendas were set as the inadvertent result of administrative reforms. Subsequently, scientific developments were more or less ignored due to concern about adverse policy outcomes. Finally, in the 1980s and 1990s, scientific arguments were used instrumentally to argue against isolation and for the termination of residential care. CONCLUSION: Contrary to public expectations, health policy is not always rational and scientifically justified. In the process of policy making, the role of science can be limited and instrumental. Policy change may require the opening of policy windows, as a result of convergence of the problem, policy, and political streams, by effective exercise of leadership. Scientists and policymakers should be attentive enough to the political context of policies
    corecore