3,966 research outputs found

    The emission of energetic electrons from the complex streamer corona adjacent to leader stepping

    Full text link
    We here propose a model to capture the complexity of the streamer corona adjacent to leader stepping and relate it to the production of energetic electrons serving as a source of X-rays and γ\gamma-rays, manifesting in terrestrial gamma-ray flashes (TGFs). During its stepping, the leader tip is accompanied by a corona consisting of multitudinous streamers perturbing the air in its vicinity and leaving residual charge behind. We explore the relative importance of air perturbations and preionization on the production of energetic run-away electrons by 2.5D cylindrical Monte Carlo particle simulations of streamers in ambient fields of 16 kV cm1^{-1} and 50 kV cm1^{-1} at ground pressure. We explore preionization levels between 101010^{10} m3^{-3} and 101310^{13} m3^{-3}, channel widths between 0.5 and 1.5 times the original streamer widths and air perturbation levels between 0\% and 50\% of ambient air. We observe that streamers in preionized and perturbed air accelerate more efficiently than in non-ionized and uniform air with air perturbation dominating the streamer acceleration. We find that in unperturbed air preionization levels of 101110^{11} m3^{-3} are sufficient to explain run-away electron rates measured in conjunction with terrestrial gamma-ray flashes. In perturbed air, the production rate of runaway electrons varies from 101010^{10} s1^{-1} to 101710^{17} s1^{-1} with maximum electron energies from some hundreds of eV up to some hundreds of keV in fields above and below the breakdown strength. In the presented simulations the number of runaway electrons matches with the number of energetic electrons measured in alignment with the observations of terrestrial gamma-ray flashes. Conclusively, the complexity of the streamer zone ahead of leader tips allows explaining the emission of energetic electrons and photons from streamer discharges.Comment: 29 pages, 11 figures, 2 table

    Acceleration Mechanics in Relativistic Shocks by the Weibel Instability

    Full text link
    Plasma instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks may be responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated long-term particle acceleration associated with relativistic electron-ion or electron-positron jet fronts propagating into an unmagnetized ambient electron-ion or electron-positron plasma. These simulations have been performed with a longer simulation system than our previous simulations in order to investigate the nonlinear stage of the Weibel instability and its particle acceleration mechanism. The current channels generated by the Weibel instability are surrounded by toroidal magnetic fields and radial electric fields. This radial electric field is quasi stationary and accelerates particles which are then deflected by the magnetic field.Comment: 17 pages, 5 figures, accepted for publication in ApJ, A full resolution ot the paper can be found at http://gammaray.nsstc.nasa.gov/~nishikawa/accmec.pd

    Simulation of electrostatic ion instabilities in the presence of parallel currents and transverse electric fields

    Get PDF
    A spatially two-dimensional electrostatic PIC simulation code was used to study the stability of a plasma equilibrium characterized by a localized transverse dc electric field and a field-aligned drift for L is much less than Lx, where Lx is the simulation length in the x direction and L is the scale length associated with the dc electric field. It is found that the dc electric field and the field-aligned current can together play a synergistic role to enable the excitation of electrostatic waves even when the threshold values of the field aligned drift and the E x B drift are individually subcritical. The simulation results show that the growing ion waves are associated with small vortices in the linear stage, which evolve to the nonlinear stage dominated by larger vortices with lower frequencies

    Particle Acceleration, Magnetic Field Generation, and Associated Emission in Collisionless Relativistic Jets

    Full text link
    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The ``jitter'' radiation from deflected electrons has different properties than synchrotron radiation which assumes a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.Comment: 4 pages, 3 figures, contributed talk at the workshop: High Energy Phenomena in Relativistic Outflows (HEPRO), Dublin, 24-28 September 2007. Fig. 3 is replaced by the correct versio

    Magnetic-field dependence of antiferromagnetic structure in CeRh1-xCoxIn5

    Full text link
    We investigated effects of magnetic field H on antiferromagnetic (AF) structures in CeRh_{1-x}Co_xIn_5 by performing the elastic neutron scattering measurements. By applying H along the [1,-1,0] direction, the incommensurate AF state with the propagation vector of q_{h1}=(1/2,1/2,0.297) observed at H=0 is replaced by the commensurate AF state with the q_{c2} = (1/2, 1/2, 1/4) modulation above 2 T for x=0.23, while the AF states with the q_{c1}=(1/2,1/2,1/2) and q_{h2}=(1/2,1/2,0.42) modulations seen at H=0 change into a single q_{c1}-AF state above ~1.6 T for x=0.7. These results suggest the different types of AF correlation for Co concentrations of 0.23 and 0.7 in an applied magnetic field H.Comment: 4 pages, 2 figures, to appear in the proceedings of ICM2009 (Karlsruhe, Germany

    Particle acceleration, magnetic field generation, and emission in relativistic pair jets

    Get PDF
    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating into an ambient plasma. We find that the growth times of Weibel instability are proportional to the Lorentz factors of jets. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction.Comment: 4 pages, 2 figures, submitted to Il nuovo cimento (4th Workshop Gamma-Ray Bursts in the Afterglow Era, Rome, 18-22 October 2004

    Particle acceleration in electron-ion jets

    Full text link
    Weibel instability created in collisionless shocks is responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-ion jet fronts propagating into an ambient plasma without initial magnetic fields with a longer simulation system in order to investigate nonlinear stage of the Weibel instability and its acceleration mechanism. The current channels generated by the Weibel instability induce the radial electric fields. The z component of the Poynting vector (E x B) become positive in the large region along the jet propagation direction. This leads to the acceleration of jet electrons along the jet. In particular the E x B drift with the large scale current channel generated by the ion Weibel instability accelerate electrons effectively in both parallel and perpendicular directions.Comment: 2 pages, 1 figure, Proceedings for Astrophysical Sources of High Energy Particles and Radiation, AIP proceeding Series, eds . T. Bulik, G. Madejski and B. Ruda

    Design and performance of the muon monitor for the T2K neutrino oscillation experiment

    Full text link
    This article describes the design and performance of the muon monitor for the T2K (Tokaito-Kamioka) long baseline neutrino oscillation experiment. The muon monitor consists of two types of detector arrays: ionization chambers and silicon PIN photodiodes. It measures the intensity and profile of muons produced, along with neutrinos, in the decay of pions. The measurement is sensitive to the intensity and direction of the neutrino beam. The linearity and stability of the detectors were measured in beam tests to be within 2.4% and 1.5%, respectively. Based on the test results, the precision of the beam direction measured by the muon monitor is expected to be 0.25 mrad.Comment: 22 page

    A General Relativistic Magnetohydrodynamics Simulation of Jet Formation

    Full text link
    We have performed a fully three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulation of jet formation from a thin accretion disk around a Schwarzschild black hole with a free-falling corona. The initial simulation results show that a bipolar jet (velocity 0.3c\sim 0.3c) is created as shown by previous two-dimensional axisymmetric simulations with mirror symmetry at the equator. The 3-D simulation ran over one hundred light-crossing time units (τS=rS/c\tau_{\rm S} = r_{\rm S}/c where rS2GM/c2r_{\rm S} \equiv 2GM/c^2) which is considerably longer than the previous simulations. We show that the jet is initially formed as predicted due in part to magnetic pressure from the twisting the initially uniform magnetic field and from gas pressure associated with shock formation in the region around r=3rSr = 3 r_{\rm S}. At later times, the accretion disk becomes thick and the jet fades resulting in a wind that is ejected from the surface of the thickened (torus-like) disk. It should be noted that no streaming matter from a donor is included at the outer boundary in the simulation (an isolated black hole not binary black hole). The wind flows outwards with a wider angle than the initial jet. The widening of the jet is consistent with the outward moving torsional Alfv\'{e}n waves (TAWs). This evolution of disk-jet coupling suggests that the jet fades with a thickened accretion disk due to the lack of streaming material from an accompanying star.Comment: 27 pages, 8 figures, revised and accepted to ApJ (figures with better resolution: http://gammaray.nsstc.nasa.gov/~nishikawa/schb1.pdf
    corecore