142 research outputs found

    Particle simulations in magnetospheric plasmas

    Get PDF
    In view of the recent remarkable advancement of computer technology and simulation software, simulation studies are one of the most powerful academic tools for establishment of quantitative space physics and modelling of our space environment. The complex nature encountered in space plasma physics has motivated considerable development in computer simulations, which have played an essential role in the development of space plasma theory. This report describes research undertaken to understand physical processes involved in plasma waves observed in the magnetospheric plasmas, and associated nonlinear phenomena such as heating, diffusion, and acceleration of particles due to excited waves. The research explains and clarifies the observational data both qualitatively and quantitatively

    GRMHD/RMHD Simulations and Stability of Magnetized Spine-Sheath Relativistic Jets

    Get PDF
    A new general relativistic magnetohydrodynamics (GRMHD) code ``RAISHIN'' used to simulate jet generation by rotating and non-rotating black holes with a geometrically thin Keplarian accretion disk finds that the jet develops a spine-sheath structure in the rotating black hole case. Spine-sheath structure and strong magnetic fields significantly modify the Kelvin-Helmholtz (KH) velocity shear driven instability. The RAISHIN code has been used in its relativistic magnetohydrodynamic (RMHD) configuration to study the effects of strong magnetic fields and weakly relativistic sheath motion, c/2, on the KH instability associated with a relativistic, Lorentz factor equal 2.5, jet spine-sheath interaction. In the simulations sound speeds up to c/1.7 and Alfven wave speeds up to 0.56 c are considered. Numerical simulation results are compared to theoretical predictions from a new normal mode analysis of the RMHD equations. Increased stability of a weakly magnetized system resulting from c/2 sheath speeds and stabilization of a strongly magnetized system resulting from c/2 sheath speeds is found.Comment: 5 pages, 5 figures, accepted for publication in Astrophysics and Space Scienc

    Two-point correlation function of density perturbations in a large void universe

    Full text link
    We study the two-point correlation function of density perturbations in a spherically symmetric void universe model which does not employ the Copernican principle. First we solve perturbation equations in the inhomogeneous universe model and obtain density fluctuations by using a method of non-linear perturbation theory which was adopted in our previous paper. From the obtained solutions, we calculate the two-point correlation function and show that it has a local anisotropy at the off-center position differently from those in homogeneous and isotropic universes. This anisotropy is caused by the tidal force in the off-center region of the spherical void. Since no tidal force exists in homogeneous and isotropic universes, we may test the inhomogeneous universe by observing statistical distortion of the two-point galaxy correlation function.Comment: 16 pages, 3 figure

    The Influence of an Ambient Magnetic Field on Relativistic Collisionless Plasma Shocks

    Full text link
    Plasma outflows from gamma-ray bursts, supernovae, and relativistic jets, in general, interact with the surrounding medium through collisionless shocks. The microphysics of such shocks are still poorly understood, which, potentially, can introduce uncertainties in the interpretation of observations. It is now well established that the Weibel two-stream instability is capable of generating strong electromagnetic fields in the transition region between the jet and the ambient plasma. However, the parameter space of collisionless shocks is vast and still remains unexplored. In this Letter, we focus on how an ambient magnetic field affects the evolution of the electron Weibel instability and the associated shock. Using a particle-in-cell code, we have performed three-dimensional numerical experiments on such shocks. We compare simulations in which a jet is injected into an unmagnetized plasma with simulations in which the jet is injected into a plasma with an ambient magnetic field both parallel and perpendicular to the jet flow. We find that there exists a threshold of the magnetic field strength below which the Weibel two-stream instability dominates, and we note that the interstellar medium magnetic field strength lies well below this value. In the case of a strong magnetic field parallel to the jet, the Weibel instability is quenched. In the strong perpendicular case, ambient and jet electrons are strongly accelerated because of the charge separation between deflected jet electrons and less deflected jet ions. Also, the electromagnetic topologies become highly non-linear and complex with the appearance of anti-parallel field configurations.Comment: 4 pages with five figures. Accepted for publication in ApJ Letter

    Non-relativistic perpendicular shocks modeling young supernova remnants: nonstationary dynamics and particle acceleration at forward and reverse shocks

    Full text link
    For parameters that are applicable to the conditions at young supernova remnants, we present results of 2D3V particle-in-cell simulations of a non-relativistic plasma shock with a large-scale perpendicular magnetic field inclined at 45-deg angle to the simulation plane to approximate 3D physics. We developed an improved clean setup that uses the collision of two plasma slabs with different density and velocity, leading to the development of two distinctive shocks and a contact discontinuity. The shock formation is mediated by Weibel-type filamentation instabilities that generate magnetic turbulence. Cyclic reformation is observed in both shocks with similar period, for which we note global variations on account of shock rippling and local variations arising from turbulent current filaments. The shock rippling occurs on spatial and temporal scales given by gyro-motions of shock-reflected ions. The drift motion of electrons and ions is not a gradient drift, but commensurates with E x B drift. We observe a stable suprathermal tail in the ion spectra, but no electron acceleration because the amplitude of Buneman modes in the shock foot is insufficient for trapping relativistic electrons. We see no evidence of turbulent reconnection. A comparison with other 2D simulation results suggests that the plasma beta and the ion-to-electron mass ratio are not decisive for efficient electron acceleration, but pre-acceleration efficacy might be reduced with respect to the 2D results once three-dimensional effects are fully accounted for. Other microphysical factors may also be at play to limit the amplitude of Buneman waves or prevent return of electrons to the foot region.Comment: Astrophysical Journal, in press, some figures with low resolutio
    corecore