328 research outputs found

    Charged particle display

    Full text link
    An optical shutter based on charged particles is presented. The output light intensity of the proposed device has an intrinsic dependence on the interparticle spacing between charged particles, which can be controlled by varying voltages applied to the control electrodes. The interparticle spacing between charged particles can be varied continuously and this opens up the possibility of particle based displays with continuous grayscale.Comment: typographic errors corrected in Eqs (37) and (39); published in Journal of Applied Physics; doi:10.1063/1.317648

    The bending of cell sheets - from folding to rolling

    Get PDF
    The bending of cell sheets plays a major role in multicellular embryonic morphogenesis. Recent advances are leading to a deeper understanding of how the biophysical properties and the force-producing behaviors of cells are regulated, and how these forces are integrated across cell sheets during bending. We review work that shows that the dynamic balance of apical versus basolateral cortical tension controls specific aspects of invagination of epithelial sheets, and recent evidence that tissue expansion by growth contributes to neural retinal invagination in a stem cell-derived, self-organizing system. Of special interest is the detailed analysis of the type B inversion in Volvox reported in BMC Biology by Höhn and Hallmann, as this is a system that promises to be particularly instructive in understanding morphogenesis of any monolayered spheroid system

    Biogeographic history of the pantropical family Gesneriaceae with a focus on the Indian plate and diversification through the Old World

    Get PDF
    The Gesneriaceae consists of around 150 genera and c. 3750 species with a predominantly tropical and subtropical distribution across all continents. Although previous studies have proposed an American origin of Gesneriaceae, the biogeographic history of this pantropical plant family is still unclear, particularly in the Old World. To address this, we assembled the most comprehensively sampled matrix of Gesneriaceae with 143 Gesneriaceae genera and 355 species, including key samples from Sri Lanka analysed here for the first time. We generated molecular phylogenies based on four plastid gene regions (ndhF, matK, rps16 and trnL-F), obtained fossil-calibrated trees, and reconstructed ancestral areas and dispersal routes using Bayesian methods. Our results confirm the origin for the family in the Early Palaeocene (67. Ma) in the region of present-day Central America & Andean South America, and that diversity in the Old World originated from a long-distance dispersal event from South America around 59 Ma, most likely to the Indian plate, which was an island at the time. This lineage then dispersed to Malesia and later East Asia, which would ultimately become a major centre of diversity and source of many dispersals to other regions. Our results thus highlight the Indian plate as a likely key player in the early diversification of Old World Gesneriaceae, even though it is now more diverse elsewhere, and hence offer novel insights into this plant family’s dispersal routes and areas of diversification in the Old World

    Suppression of backscattered diffraction from sub-wavelength ‘moth-eye’ arrays

    Full text link
    The eyes and wings of some species of moth are covered with arrays of nanoscale features that dramatically reduce reflection of light. There have been multiple examples where this approach has been adapted for use in antireflection and antiglare technologies with the fabrication of artificial moth-eye surfaces. In this work, the suppression of iridescence caused by the diffraction of light from such artificial regular moth-eye arrays at high angles of incidence is achieved with the use of a new tiled domain design, inspired by the arrangement of features on natural moth-eye surfaces. This bio-mimetic pillar architecture contains high optical rotational symmetry and can achieve high levels of diffraction order power reduction. For example, a tiled design fabricated in silicon and consisting of domains with 9 different orientations of the traditional hexagonal array exhibited a ~96% reduction in the intensity of the ?1 diffraction order. It is suggested natural moth-eye surfaces have evolved a tiled domain structure as it confers efficient antireflection whilst avoiding problems with high angle diffraction. This combination of antireflection and stealth properties increases chances of survival by reducing the risk of the insect being spotted by a predator. Furthermore, the tiled domain design could lead to more effective artificial moth-eye arrays for antiglare and stealth applications

    Circulating KCNH2 Current-Activating Factor in Patients with Heart Failure and Ventricular Tachyarrhythmia

    Get PDF
    It is estimated that approximately half of the deaths in patients with HF are sudden and that the most likely causes of sudden death are lethal ventricular tachyarrhythmias such as ventricular tachycardia (VT) or fibrillation (VF). However, the precise mechanism of ventricular tachyarrhythmias remains unknown. The KCNH2 channel conducting the delayed rectifier K(+) current (I(Kr)) is recognized as the most susceptible channel in acquired long QT syndrome. Recent findings have revealed that not only suppression but also enhancement of I(Kr) increase vulnerability to major arrhythmic events, as seen in short QT syndrome. Therefore, we investigated the existence of a circulating KCNH2 current-modifying factor in patients with HF.We examined the effects of serum of HF patients on recombinant I(Kr) recorded from HEK 293 cells stably expressing KCNH2 by using the whole-cell patch-clamp technique. Study subjects were 14 patients with non-ischemic HF and 6 normal controls. Seven patients had a history of documented ventricular tachyarrhythmias (VT: 7 and VF: 1). Overnight treatment with 2% serum obtained from HF patients with ventricular arrhythmia resulted in a significant enhancement in the peaks of I(Kr) tail currents compared to the serum from normal controls and HF patients without ventricular arrhythmia.Here we provide the first evidence for the presence of a circulating KCNH2 channel activator in patients with HF and ventricular tachyarrhythmias. This factor may be responsible for arhythmogenesis in patients with HF

    The Inactivation Principle: Mathematical Solutions Minimizing the Absolute Work and Biological Implications for the Planning of Arm Movements

    Get PDF
    An important question in the literature focusing on motor control is to determine which laws drive biological limb movements. This question has prompted numerous investigations analyzing arm movements in both humans and monkeys. Many theories assume that among all possible movements the one actually performed satisfies an optimality criterion. In the framework of optimal control theory, a first approach is to choose a cost function and test whether the proposed model fits with experimental data. A second approach (generally considered as the more difficult) is to infer the cost function from behavioral data. The cost proposed here includes a term called the absolute work of forces, reflecting the mechanical energy expenditure. Contrary to most investigations studying optimality principles of arm movements, this model has the particularity of using a cost function that is not smooth. First, a mathematical theory related to both direct and inverse optimal control approaches is presented. The first theoretical result is the Inactivation Principle, according to which minimizing a term similar to the absolute work implies simultaneous inactivation of agonistic and antagonistic muscles acting on a single joint, near the time of peak velocity. The second theoretical result is that, conversely, the presence of non-smoothness in the cost function is a necessary condition for the existence of such inactivation. Second, during an experimental study, participants were asked to perform fast vertical arm movements with one, two, and three degrees of freedom. Observed trajectories, velocity profiles, and final postures were accurately simulated by the model. In accordance, electromyographic signals showed brief simultaneous inactivation of opposing muscles during movements. Thus, assuming that human movements are optimal with respect to a certain integral cost, the minimization of an absolute-work-like cost is supported by experimental observations. Such types of optimality criteria may be applied to a large range of biological movements

    There is more than one way to turn a spherical cellular monolayer inside out: type B embryo inversion in Volvox globator

    Get PDF
    Höhn S, Hallmann A. There is more than one way to turn a spherical cellular monolayer inside out: type B embryo inversion in Volvox globator. BMC Biology. 2011;9(1): 89.Background: Epithelial folding is a common morphogenetic process during the development of multicellular organisms. In metazoans, the biological and biomechanical processes that underlie such three-dimensional (3D) developmental events are usually complex and difficult to investigate. Spheroidal green algae of the genus Volvox are uniquely suited as model systems for studying the basic principles of epithelial folding. Volvox embryos begin life inside out and then must turn their spherical cell monolayer outside in to achieve their adult configuration; this process is called 'inversion.' There are two fundamentally different sequences of inversion processes in Volvocaceae: type A and type B. Type A inversion is well studied, but not much is known about type B inversion. How does the embryo of a typical type B inverter, V. globator, turn itself inside out? Results: In this study, we investigated the type B inversion of V. globator embryos and focused on the major movement patterns of the cellular monolayer, cell shape changes and changes in the localization of cytoplasmic bridges (CBs) connecting the cells. Isolated intact, sectioned and fragmented embryos were analyzed throughout the inversion process using light microscopy, confocal laser scanning microscopy, scanning electron microscopy and transmission electron microscopy techniques. We generated 3D models of the identified cell shapes, including the localizations of CBs. We show how concerted cell-shape changes and concerted changes in the position of cells relative to the CB system cause cell layer movements and turn the spherical cell monolayer inside out. The type B inversion of V. globator is compared to the type A inversion in V. carteri. Conclusions: Concerted, spatially and temporally coordinated changes in cellular shapes in conjunction with concerted migration of cells relative to the CB system are the causes of type B inversion in V. globator. Despite significant similarities between type A and type B inverters, differences exist in almost all details of the inversion process, suggesting analogous inversion processes that arose through parallel evolution. Based on our results and due to the cellular biomechanical implications of the involved tensile and compressive forces, we developed a global mechanistic scenario that predicts epithelial folding during embryonic inversion in V. globator

    Glutathione Deficiency in Cardiac Patients Is Related to the Functional Status and Structural Cardiac Abnormalities

    Get PDF
    International audienceBACKGROUND: The tripeptide glutathione (L-gamma-glutamyl-cysteinyl-glycine) is essential to cell survival, and deficiency in cardiac and systemic glutathione relates to heart failure progression and cardiac remodelling in animal models. Accordingly, we investigated cardiac and blood glutathione levels in patients of different functional classes and with different structural heart diseases. METHODS: Glutathione was measured using standard enzymatic recycling method in venous blood samples obtained from 91 individuals, including 15 healthy volunteers and 76 patients of New York Heart Association (NYHA) functional class I to IV, undergoing cardiac surgery for coronary artery disease, aortic stenosis or terminal cardiomyopathy. Glutathione was also quantified in right atrial appendages obtained at the time of surgery. RESULTS: In atrial tissue, glutathione was severely depleted (-58%) in NYHA class IV patients compared to NYHA class I patients (P = 0.002). In patients with coronary artery disease, this depletion was related to the severity of left ventricular dysfunction (P = 0.006). Compared to healthy controls, blood glutathione was decreased by 21% in NYHA class I patients with structural cardiac disease (P<0.01), and by 40% in symptomatic patients of NYHA class II to IV (P<0.0001). According to the functional NYHA class, significant depletion in blood glutathione occurred before detectable elevation in blood sTNFR1, a marker of symptomatic heart failure severity, as shown by the exponential relationship between these two parameters in the whole cohort of patients (r = 0.88). CONCLUSIONS: This study provides evidence that cardiac and systemic glutathione deficiency is related to the functional status and structural cardiac abnormalities of patients with cardiac diseases. These data also suggest that blood glutathione test may be an interesting new biomarker to detect asymptomatic patients with structural cardiac abnormalities
    corecore