6,621 research outputs found

    Small scale noise and wind tunnel tests of upper surface blowing nozzle flap concepts. Volume 1. Aerodynamic test results

    Get PDF
    The results and analyses of aerodynamic and acoustic studies conducted on the small scale noise and wind tunnel tests of upper surface blowing nozzle flap concepts are presented. Various types of nozzle flap concepts were tested. These are an upper surface blowing concept with a multiple slot arrangement with seven slots (seven slotted nozzle), an upper surface blowing type with a large nozzle exit at approximately mid-chord location in conjunction with a powered trailing edge flap with multiple slots (split flow or partially slotted nozzle). In addition, aerodynamic tests were continued on a similar multi-slotted nozzle flap, but with 14 slots. All three types of nozzle flap concepts tested appear to be about equal in overall aerodynamic performance but with the split flow nozzle somewhat better than the other two nozzle flaps in the landing approach mode. All nozzle flaps can be deflected to a large angle to increase drag without significant loss in lift. The nozzle flap concepts appear to be viable aerodynamic drag modulation devices for landing

    Magnetic and nematic orderings in spin-1 antiferromagnets with single-ion anisotropy

    Full text link
    We study a spin-one Heisenberg model with exchange interaction, J, uniaxial single-ion exchange anisotropy, D, and Zeeman coupling to a magnetic field, B, parallel to the symmetry axis. We com- pute the (D/J,B/J) quantum phase diagram for square and simple cubic lattices by combining an- alytical and Quantum Monte Carlo approaches, and find a transition between XY-antiferromagnetic and ferronematic phases that spontaneously break the U(1) symmetry of the model. In the language of bosonic gases, this is a transition between a Bose-Einstein condensate (BEC) of single bosons and a BEC of pairs. Our work opens up new avenues for measuring this transition in real magnets

    Marginally unstable Holmboe modes

    Get PDF
    Marginally unstable Holmboe modes for smooth density and velocity profiles are studied. For a large family of flows and stratification that exhibit Holmboe instability, we show that the modes with phase velocity equal to the maximum or the minimum velocity of the shear are marginally unstable. This allows us to determine the critical value of the control parameter R (expressing the ratio of the velocity variation length scale to the density variation length scale) that Holmboe instability appears R=2. We then examine systems for which the parameter R is very close to this critical value. For this case we derive an analytical expression for the dispersion relation of the complex phase speed c(k) in the unstable region. The growth rate and the width of the region of unstable wave numbers has a very strong (exponential) dependence on the deviation of R from the critical value. Two specific examples are examined and the implications of the results are discussed.Comment: Submitted to Physics of Fluid

    Learning Professional Dress through Peer-Evaluation

    Get PDF
    Aspects of professional attire/dress and its influence have been examined in both the educational and nonacademic settings, suggesting the importance of appearance management in the work environment (Okoro & Washington, 2011; Cardon & Okoro, 2009). Furthermore, there has been much discourse on pedagogical aspects of teaching professionalism, including what is usually deemed ‘appropriate’ for one’s profession. However, our literature review suggests a gap in research addressing what and how college students entering the general apparel and textiles industries should wear to internships and networking events. For the last three years, I have been teaching a 300 level course focusing on the creating, marketing, manufacturing and retailing of textiles/apparel/home fashion goods; the business of fashion

    Unitary Fermi gas, epsilon expansion, and nonrelativistic conformal field theories

    Full text link
    We review theoretical aspects of unitary Fermi gas (UFG), which has been realized in ultracold atom experiments. We first introduce the epsilon expansion technique based on a systematic expansion in terms of the dimensionality of space. We apply this technique to compute the thermodynamic quantities, the quasiparticle spectrum, and the critical temperature of UFG. We then discuss consequences of the scale and conformal invariance of UFG. We prove a correspondence between primary operators in nonrelativistic conformal field theories and energy eigenstates in a harmonic potential. We use this correspondence to compute energies of fermions at unitarity in a harmonic potential. The scale and conformal invariance together with the general coordinate invariance constrains the properties of UFG. We show the vanishing bulk viscosities of UFG and derive the low-energy effective Lagrangian for the superfluid UFG. Finally we propose other systems exhibiting the nonrelativistic scaling and conformal symmetries that can be in principle realized in ultracold atom experiments.Comment: 44 pages, 15 figures, contribution to Lecture Notes in Physics "BCS-BEC crossover and the Unitary Fermi Gas" edited by W. Zwerge

    Spin-label ESR studies of lipid-protein interactions in thylakoid membranes.

    No full text

    The resting microstate networks (RMN): cortical distributions, dynamics, and frequency specific information flow

    Full text link
    A brain microstate is characterized by a unique, fixed spatial distribution of electrically active neurons with time varying amplitude. It is hypothesized that a microstate implements a functional/physiological state of the brain during which specific neural computations are performed. Based on this hypothesis, brain electrical activity is modeled as a time sequence of non-overlapping microstates with variable, finite durations (Lehmann and Skrandies 1980, 1984; Lehmann et al 1987). In this study, EEG recordings from 109 participants during eyes closed resting condition are modeled with four microstates. In a first part, a new confirmatory statistics method is introduced for the determination of the cortical distributions of electric neuronal activity that generate each microstate. All microstates have common posterior cingulate generators, while three microstates additionally include activity in the left occipital/parietal, right occipital/parietal, and anterior cingulate cortices. This appears to be a fragmented version of the metabolically (PET/fMRI) computed default mode network (DMN), supporting the notion that these four regions activate sequentially at high time resolution, and that slow metabolic imaging corresponds to a low-pass filtered version. In the second part of this study, the microstate amplitude time series are used as the basis for estimating the strength, directionality, and spectral characteristics (i.e., which oscillations are preferentially transmitted) of the connections that are mediated by the microstate transitions. The results show that the posterior cingulate is an important hub, sending alpha and beta oscillatory information to all other microstate generator regions. Interestingly, beyond alpha, beta oscillations are essential in the maintenance of the brain during resting state.Comment: pre-print, technical report, The KEY Institute for Brain-Mind Research (Zurich), Kansai Medical University (Osaka

    Papers in Southeast Asian Linguistics No. 3

    Get PDF

    Innovations orthogonalization: a solution to the major pitfalls of EEG/MEG "leakage correction"

    Full text link
    The problem of interest here is the study of brain functional and effective connectivity based on non-invasive EEG-MEG inverse solution time series. These signals generally have low spatial resolution, such that an estimated signal at any one site is an instantaneous linear mixture of the true, actual, unobserved signals across all cortical sites. False connectivity can result from analysis of these low-resolution signals. Recent efforts toward "unmixing" have been developed, under the name of "leakage correction". One recent noteworthy approach is that by Colclough et al (2015 NeuroImage, 117:439-448), which forces the inverse solution signals to have zero cross-correlation at lag zero. One goal is to show that Colclough's method produces false human connectomes under very broad conditions. The second major goal is to develop a new solution, that appropriately "unmixes" the inverse solution signals, based on innovations orthogonalization. The new method first fits a multivariate autoregression to the inverse solution signals, giving the mixed innovations. Second, the mixed innovations are orthogonalized. Third, the mixed and orthogonalized innovations allow the estimation of the "unmixing" matrix, which is then finally used to "unmix" the inverse solution signals. It is shown that under very broad conditions, the new method produces proper human connectomes, even when the signals are not generated by an autoregressive model.Comment: preprint, technical report, under license "Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)", https://creativecommons.org/licenses/by-nc-nd/4.0
    • …
    corecore