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Abstract (250 word limit) 

Drugs are commonly used in combinations larger than two for treating bacterial infection. 

However, it is generally impossible to infer directly from the effects of individual drugs 

the net effect of a multi-drug combination. Here we develop a mechanism-independent 

method for predicting the microbial growth response to combinations of more than two 

drugs. Performing experiments in both gram-negative (Escherichia coli) and gram-

positive (Staphylococcus aureus) bacteria, we demonstrate that for a wide range of drugs, 

the bacterial responses to drug pairs are sufficient to infer the effects of larger drug 

combinations. To experimentally establish the broad applicability of the method, we 

employ drug combinations comprised of protein synthesis inhibitors (macrolides, 

aminoglycosides, tetracyclines, lincosamides, and chloramphenicol), DNA synthesis 

inhibitors (fluoroquinolones and quinolones), folic acid synthesis inhibitors 

(sulfonamides and diaminopyrimidines), inhibitors of cell wall synthesis, polypeptide 

antibiotics, preservatives, and analgesics. Moreover, we show that the microbial 

responses to these drug combinations can be predicted using a simple formula that should 

be widely applicable in pharmacology. These findings offer a powerful, readily 

accessible method for the rational design of candidate therapies using large drug 

combinations. In addition, the accurate predictions of this framework raise the question of 

whether the multi-drug response in bacteria obeys statistical, rather than chemical, laws 

for combinations larger than two. 
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\body 

Introduction 

Combinations of three or more drugs have been studied in both clinical and 

laboratory settings as potential treatments for severe microbial infections1-4. Drug 

interactions, including those that are clinically beneficial, have typically been studied 

using descriptive, rather than predictive, approaches that quantify the effects of a given 

drug pair on growth5-7. For example, two drugs whose effects on microbial growth 

counteract one another, when used in combination, are known as antagonistic, whereas 

drugs whose potencies are significantly increased in combination are referred to as 

synergistic. As a result of these interactions, the effects of drug combinations cannot, in 

general, be predicted based on the effects of the drugs alone7. While combinations of two 

drugs have been studied extensively, little is known about the way more than two drugs 

combine to yield higher-order effects on bacterial growth, which is the relevant clinical 

outcome in treatments of bacterial infections. Here, we ask if it is possible to understand 

and predict the effects of these larger drug combinations without relying on specific 

mechanistic details but on principles shared by a large number of biological systems.  

For example, consider a classic 3-drug combination of chloramphenicol (a protein 

synthesis inhibitor), ofloxacin (a fluoroquinolone DNA synthesis inhibitor), and 

trimethoprim (a folic acid synthesis inhibitor) at the following concentrations: 

[Chloramphenicol]=1.5 μg/mL, [Ofloxacin]=40 ng/mL, and [Trimethoprim]=0.3 μg/mL. 

The growth rate of E. coli treated with each drug alone is about 0.58, 0.47 and 0.39 

(normalized by the growth of untreated cells), respectively.  Combining chloramphenicol 

and ofloxacin leads to a growth rate of 0.53, which is significantly higher than expected 

from a naive multiplication of the single drug rates (0.27) and consistent with previously 

observed antagonism between DNA synthesis inhibitors and protein synthesis inhibitors8.  

On the other hand, combining ofloxacin with trimethoprim completely eradicates growth 

(growth < 0.01, as compared to 0.18 expected from single drug growth rates), consistent 

with previously reported synergy between trimethoprim and fluoroquinolones9.  Finally, 

the combination of chloramphenicol and trimethoprim leads to a growth rate of 0.16, 

slightly smaller than the 0.23 predicted from single drug growth rates. The effects of all 
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three pairs of drugs differ significantly from that predicted by multiplication of single 

drug effects. There is, therefore, seemingly little hope that such an assumption of 

independence will be useful when all three drugs are combined and the chemical 

complexity of the problem is increased. Surprisingly, the growth rate in the presence of 

all three drugs (0.11) is equal to the product of single drug growth rates, suggesting that 

the drugs act independently.  Why have the previously strong interactions between drug 

pairs been eliminated when the three drugs are combined, leading to a cocktail of 

effectively independent drugs? One hypothesis would be that the net effect of the drug 

combination arises from compensatory interactions that can only be measured when all 

three drugs are present. Alternatively, the net effect could follow directly from the 

accumulation of interactions between pairs of drugs. We wish to answer this question 

using a quantitative framework to provide insight into how the cell integrates signals 

from larger drug combinations.  

To tackle this question for a wide range of drug combinations, we develop a 

mechanism-independent model to quantify the relative contributions of combined 

chemical exposure—that is, 1-drug effects, 2-drug effects, and in general, N-drug 

effects—to the multi-drug growth response. We construct the model using a common 

statistical method, entropy maximization, which ensures it does not incorporate 

unwarranted statistical structure. We then test predictions of this framework using two 

species that represent gram–negative (Escherichia coli) and gram–positive 

(Staphylococcus aureus) bacteria. This predictive framework is a potentially powerful 

tool for studying multi-drug effects, even without knowledge of the underlying network 

structure, molecular dynamics, or any other intracellular details. 

 

 

Results  

Response of E. Coli to Single Drugs and Drug Pairs 

 First, we measured the growth of E. coli in the presence of a single drug and then 

pairs of drugs by growing liquid cultures in Luria-Bertani media. We used a large variety 

of drugs, including several classes of protein synthesis inhibitors (with 30S and 50S 

ribosomal targets), DNA synthesis inhibitors (fluoroquinolones), folic acid synthesis 
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inhibitors, and analgesics (Table S1). Using time series of optical density measured 

directly from a 96-well plate reader, we estimated growth with nonlinear least-squares 

fitting (Methods).  We define g1...N to be the measured growth rate of cells in our 

experiments exposed to a treatment with N drugs, D1, D2, ..., DN. All growth rates are 

normalized by growth rate in the absence of drugs.  To understand the relationship 

between pairwise drug interactions and the net drug interaction between more than two 

drugs, we first asked whether one can estimate the growth response to three or four drugs 

using only our experimental measurements of single drug, gi, and two-drug, gij, growth 

rates (Fig. 1).  

 We model the effect of each drug, Di, using an associated stochastic variable, Xi.  

Specifically, we assume that the measured (normalized) growth rate is equal to the mean 

(i.e. expectation) value of that random variable, gi=<Xi>.  Similarly, in the presence of 

two drugs, i and j, the normalized growth is taken to be gij=<Xi Xj> and, in general, the 

normalized growth in presence of a combination of N drugs, g1...N, equals the mean value 

<X1…XN> of the product of the Xi’s.  The relevant experimental observable, growth, is 

associated with the moments (or joint moments) of the variables Xi, not to the stochastic 

variables themselves. By construction, then, drug interactions are represented as 

correlations between these abstract variables.  In this framework, an absence of 

correlation between variables Xi and Xj indicates that the drugs do not interact, and 

therefore gij is equal to the product of the independent growth rate gi and gj. In the 

absence of interactions between the drugs, this statistical model is equivalent to the well-

known Bliss independence model5,7 in pharmacology. 

  

Drug interactions defined as a mechanism-independent statistical problem  

 To characterize the apparent interactions between drugs (i.e. synergies and 

antagonisms), we introduce a probability density P(x) =P(x1, x2, …, xN) that describes the 

joint distribution of these random variables. Unfortunately, this probability distribution 

P(x) is not directly accessible, though as we will show, it can be estimated using 

experimental data. Specifically, we wish to estimate the probability density P(x) using 

only the growth rate data in response to single drugs and drug pairs.  We call this estimate 

Ppair(x), because it depends only on the interactions between drug pairs and the effects of 
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the drugs alone. Ppair(x) provides a picture of how the two-drug interactions would 

accumulate if there were no additional drug interactions, such as those requiring the 

presence of all three or four drugs. Of course, Ppair(x) will provide a good approximation 

to the true P(x) and, ultimately, to experiments only if the effects of higher order 

interactions (3-drug, 4-drug) are negligible. 

 To estimate Ppair(x) from experiments, we use entropy maximization10,11 (Fig 1), 

a well-established statistical technique that guarantees that Ppair(x) contains only the 

information from our 1-drug and 2-drug data sets (see Supporting Online Material). In 

this case, the form of the maximum entropy distribution is given by  

Ppair (x) = 1

Z
exp hixi

i

 + Jij xix j

i< j










 

where subscripts label the components of x, and h and J represent the collection of free 

parameters determined by the data (Supporting Online Material, Figs. S3-S7), and Z is 

the normalization constant (i.e. partition function). It is straightforward to determine the 

parameters hi and Jij from our measurements of single and pairwise drug effects at each 

dosage (Supporting Online Material).  

 

3- and 4-Drug Interactions Arise from the Accumulation of Pairwise Interactions  

Using the estimated distribution Ppair(x), one can easily calculate the expected 

growth response to a larger combination of drugs, g1,..N=<X1X2…XN>, where brackets 

represent an average using the distribution Ppair(x). This prediction would match 

experimental results only if the net effects of the drug combination arise entirely from the 

accumulation of pairwise interactions but not from higher drug-interactions. To test this 

framework, we calculated expected growth response to various combinations of N drugs.  

We focus on the N=3 and N=4 cases, which are near the upper limit of current multi-drug 

treatments in clinical settings. We then directly measured bacterial growth in the presence 

of these drug combinations and compared them to our expected results using the 

estimated distribution Ppair(x) (Figures 2, S12-S16).  Notably, the relationship between 

the N-drug response and the responses to single drugs and drug pairs—a relationship 

governed by the distribution Ppair(x) calculated from entropy maximization—is well-
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described by simple algebraic expressions12 (Supporting Online Material). For example, 

the response to three drugs (gijk) is given by 

gijk = gigjk + gjgik + gkgij − 2gigjgk , 

and the response to four drugs (gijkl) is given by 

gijkl = gijgkl + gikgjl + gilgjk − 2gigjgkgl  

These well-known formulas are fully consistent with our numerical maximum entropy 

predictions and can be derived from the famous Isserlis theorem12 in the specific case 

when Ppair(x) is a Gaussian distribution.  The simple expressions provide a way to predict 

the effect of a drug combination on growth without using the sophisticated maximum 

entropy framework. However, the fact that these simple formulae yield predictions 

identical (Figure S8) to those from maximum entropy calculations guarantees that they 

contain no hidden correlations, only correlations from measured pairwise and single drug 

effects. 

Figure 2A shows representative data collected from bacteria exposed to various 

concentrations of the combination of three antibiotics, erythromycin, doxycycline and 

lincomycin. All three drugs inhibit protein synthesis, erythromycin by inhibiting 

translocation of peptidyl tRNA, doxycycline by disrupting aminoacyl-t-RNA binding to 

the ribosome, and lincomycin by inhibiting enzymatic activity of peptidyl transferase. We 

previously found that lincomycin is antagonistic with both doxycycline and 

erythromycin, while the latter two drugs are synergistic (Figure S3). However, since the 

mode of action is similar for the three drugs, it is possible that these mechanisms might 

interact in a unique way when all three drugs are present.  Therefore it is not clear 

whether the overall effect could be predicted solely from the accumulation of the 

measured pairwise interactions. Interestingly, Figure 2A demonstrates that the pairwise 

interactions are indeed sufficient to accurately predict the growth response to the 

combination of these three protein synthesis inhibitors.  

Next, we tested this approach using chloramphenicol, erythromycin, and 

salicylate. The former two drugs are protein synthesis inhibitors.  The binding of 

chloramphenicol to its ribosomal target has been shown to enhance the ribosomal binding 

of erythromycin13, and it is therefore not surprising that we found chloramphenicol and 

erythromycin to be synergistic when used together. Salicylate, the active component of 
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the analgesic aspirin, is known to be a potent inducer of a multi-drug efflux pump that 

contributes to E. coli’s resistance to chloramphenicol 14. Consequently, it is also not 

surprising that chloramphenicol and salicylate are strongly antagonistic. While 

interactions between salicylate and erythromycin have not been studied, we found them 

to be weakly antagonistic.  What happens when the three drugs are combined together? A 

priori, one might expect a novel effect when all three drugs are present.  The presence of 

salicylate decreases the intracellular concentration chloramphenicol, which might then 

decrease the binding affinity of erythromycin in a manner that depends on the dosages of 

salicylate and chloramphenicol. However, we find that pairwise interactions again yield 

accurate predictions of multi-drug effects (Fig. 2B).   

We found similar results for three additional 3-drug combinations and also for 

two 4-drug combinations.  In all experiments, the predictions from the pairwise 

experiments provide accurate descriptions of the data (Figs. 2C, S12-S16, Table 1).  

Interestingly, although most pairs of drugs interact either synergistically or 

antagonistically, we found that some 3-drug combinations, such as doxycycline-

erythromycin-lincomycin, act almost independently in larger combinations, while others, 

such as chloramphenicol-salicylate-ofloxacin, display extremely strong interactions and 

deviate significantly from Bliss independence (Fig S10). Using standard model selection 

techniques (Supporting Online Material), we verified that the Bliss independence model 

may be applicable for select drug combinations, but as a whole, the pairwise model (R2 = 

0.90) performs significantly better than the independent model (R2=0.33) for describing 

the effects of three or four drugs in combination (Table 1).  In addition to the previous 

results, which include drug combinations over a large range of drug dosages, we also 

surveyed various multi-drug interactions by performing 5 combinatorial experiments 

yielding 93 unique 3-drug combinations and a total of 120 unique dosage combinations 

(SI, Figs S17, S18, Table S2). We included a large range of drug types, including pain 

relievers, food preservatives, and inhibitors of DNA synthesis, folic acid synthesis, cell 

wall synthesis, and protein synthesis. Again, the pairwise model (R2=0.95) significantly 

outperforms the independent model (R2=0.29) and provides an excellent description of 

the data.  Overall, these results suggest that for a wide range of antimicrobial drugs, the 
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net effect of a drug combination is dominated by the accumulation of pairwise drug 

interactions, independent of the modes of action of the specific drugs involved. 

 

 

 

The Effects of 3-Drug Combinations in Staphylococcus aureus 

Since this approach does not rely on assumptions about molecular mechanisms, it 

should then be applicable to other bacterial species. As a model system, we used the 

bacterium Staphylococcus aureus, a common source of clinical infections. S. aureus are 

gram-positive bacteria whose response to antibiotics differ substantially from that of E. 

coli 15.  As for E. coli, we first measured the growth of S. aureus in response to three 

drugs: tetracycline, kanamycin, and erythromycin.  All three drugs inhibit protein 

synthesis via different mechanisms.  We performed the measurements for all drugs alone, 

and then repeated the measurement for all pairs of drugs.    

Using the single drug and pairwise measurements, we then estimated the 

distribution Ppair(x), which allowed us to calculate the expectation of the growth response 

to the 3-drug combination.  We tested these predictions by comparing them with direct 

measurements of S. aureus growth in the presence of all three drugs. Remarkably, Figure 

2D demonstrates that the mechanism-independent framework correctly predicts the 

experimentally measured growth response to multi-drug exposure in S. aureus based 

solely on the responses to single and drug pairs.   

 

Quantifying the Contribution of Pairwise Interactions to the Multi-Drug Response 

Overall, these results suggest that the integrated growth response of bacteria to 3-

drug and 4-drug combinations can be directly inferred from the measured interactions 

between drug pairs. The data and the predictions are in excellent agreement, and the 

pairwise model performs significantly better than the Bliss independence model 

according to model selection techniques.  However, the maximum entropy framework16,17 

provides an additional metric that allows us to further quantify exactly how well the 

pairwise model captures deviations from independence. To do so, we used the maximum 

entropy distributions Pi (i=1,2,3), which are consistent with the measured effects of all 
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combinations composed of up to i drugs, to calculate the fraction of total correlations, fc, 

captured by the pairwise hypothesis (Table 2).  Strikingly, this analysis demonstrates that 

there is very little additional information (~ 3%) encapsulated by pure three-drug 

interactions.  The answer to our original question is therefore surprising: the combined 

effects of these 3-drug combinations follow almost entirely from the effects of the drugs 

alone and in pairs.  

 

How Exactly Do Pairwise Interactions Accumulate? 

Our results demonstrate that for a large variety of antimicrobial drug 

combinations, no new apparent chemical interactions arise when three or four drugs are 

combined together.  Instead, the net effect of the drug combination arises from the 

cumulative effect of the pairwise interactions. Given this drastic simplification, what 

outcomes are possible when drugs are combined at specific dosages?  Surprisingly, there 

are still numerous ways that pairwise interactions can be combined to yield higher-order 

drug combinations (Fig. 3), even without requiring novel 3-drug or 4-drug effects.  For 

example, weak synergistic interactions between drug pairs, such as those between 

chloramphenicol and erythromycin or erythromycin and trimethoprim, can combine to 

yield a cumulative effect that is strongly synergistic at particular doses (Fig. 3A).  

Conversely, as we saw with the initial example of chloramphenicol, ofloxacin and 

trimethoprim (Fig. 3B), strong pairwise drug-drug interactions can combine to yield a 

cumulative drug effect weaker than or similar to the strongest pairwise interaction (Fig. 

3D).  In the case of salicylate, chloramphenicol, and ofloxacin, which interact 

antagonistically when used in pairs, the net result is an antagonistic 3-drug effect whose 

magnitude is similar to that of the pure salicylate-ofloxacin interaction (Fig. 3C).  In all 

cases, the net effect can be predicted using only the response to drug pairs (Fig. 3A-F), 

illustrating that a wide range of cumulative effects are possible depending on the dosages 

of each drug, even in the absence of pure 3-drug or 4-drug interactions.  Overall, these 

results offer a mechanism-independent framework for predicting the cooperative effect of 

drug combinations on bacterial growth using only the information from the response to 

isolated drugs and drug pairs. 
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Discussion 

Our experiments reveal that for many antimicrobial drug combinations, 

interactions involving exactly three or more drugs do not appreciably contribute to the 

overall effect of the combination. The results are complementary to detailed, mechanistic 

models because they impose an upper limit on how much mechanistic information is 

required to predict bacterial growth. Mechanistic and empirical approaches remain 

essential to characterize the effects of specific drug pairs18-23.  Remarkably, however, our 

results reveal that additional information is often not required to predict the effects of 

larger combination of drugs. Consequently, these findings may provide a powerful 

strategy for the rational design of candidate therapies using large drug combinations, 

even when full mechanistic descriptions are not available. 

Nevertheless, the approach does have practical limitations.  First, the distribution 

Ppair(x) (or equivalently, the single drug and two-drug effects, gi, and gij) measured for a 

particular bacterial strain cannot, in general, be used to predict the multi-drug response in 

a different strain.  Using this approach to screen for multi-drug combinations to combat 

drug-resistant mutants, for example, would require measurements of the relevant two-

drug effects in each specific strain.  Secondly, it is important to note that we chose 

maximum entropy as a systematic way to incorporate deviations from Bliss independence 

without adding spurious statistical structure. However, there may exist other pairwise 

models that can also be used to estimate the effects of larger drug combinations.  Our 

primary finding is that at least one such pairwise model exists that provides excellent 

predictive power.  Finally, one can design ad-hoc examples where any pairwise model is 

likely to fail.  For example, if one drug were an enzyme that required two substrates, then 

the combination of the enzyme with both substrates might yield a completely novel three-

body interaction that could not be predicted from the pairwise effects.  Interestingly, 

however, we do not find evidence for such strong three-body interactions in any of our 

experiments. 

 Previous studies have also used pairwise approximations in other contexts, but the 

underlying variables represented the dynamics of specific cellular components or other 

physical entities such as proteins or neurons24-30. Most notably, a recent study in cancer 
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cells demonstrated that the expression of some proteins in response to combinations of 

drugs can be predicted from their responses to smaller drug combinations24. Elucidating 

the biological connection between these results, at the level of individual proteins, and 

the integrated responses of entire cells, such as growth, remains an intriguing question for 

future work. Unfortunately, fully mechanistic models of the transcriptional, metabolic, 

and post-translational networks governing the multi-drug response may be intractable, 

highlighting the need for phenomenological or statistical models to bridge this gap. To 

circumvent the difficulties associated with building a mechanistic model, we have 

formulated the problem using a mechanism-independent statistical approach. By using 

coarse-grained stochastic variables, Xi, whose moments <X1..Xn> reflect the effects of a 

combination of N drugs, we have replaced large, intractable mechanistic models with a 

remarkably small statistical model of interacting drugs.  Although the variables do not 

have a direct microscopic interpretation, they do offer a very powerful tool for inferring 

the relationship between the N-drug response and the response to drug pairs.  Moreover, 

we find that simple formulae can yield accurate predictions as well, making the approach 

widely applicable and easy to implement. From a basic science perspective, the picture 

emerging from our analysis is surprising because it suggests that the chemical complexity 

underlying the cellular response to drug combinations often does not exceed that of drug 

pairs. These findings therefore raise the possibility that the multi-drug response in 

bacteria obeys statistical, rather than chemical, laws for combinations larger than two. 

Finally, because our findings do not depend on details of any specific cellular system, 

they offer a powerful predictive framework that may be applicable to other bacteria and 

even to eukaryotes. 

 

 

Methods 

Bacterial strains 

We used the wild-type BW25113 strain for all experiments on E. coli (Δ(araD-araB)567, 

ΔlacZ4787(::rrnB-3), λ-, rph-1, Δ(rhaD-rhaB)568, hsdR514)31.   We used the clinically-

isolated strain Newman for all experiments on S. aureus32.   
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Drugs 

We prepared all drug solutions from solid stocks (see Figure S1 for list of drugs, their 

classes, and mode of action). All antibiotic stock solutions were stored in the dark at -20 

degrees C in single-use daily aliquots. All drugs were thawed and diluted in sterilized 

broth for experimental use.   

 

Media 

We used Lennox LB broth (Fisher) for experiments on E. coli and Tryptic Soy Broth 

(BD) for experiments on S. aureus. 

 

 

Growth Conditions and Drug Treatments 

For both E. coli and S. aureus experiments, we inoculated 3 mL fresh media with a single 

colony and grew the cells overnight (12 h) in 14 mL culture tubes at 30 degrees C, with 

shaking at 200 rpm. Following overnight growth, stationary phase cells were diluted 

(5000 fold for E. coli, 20000 fold for S. aureus) in media and grown for an additional 2 h 

at 30 degrees C, with shaking at 200 rpm. We then transferred 195 μl cells plus media to 

96-well plates (round bottom, polystyrene, Corning) and to each well added a given 

combination of 1, 2, 3, or 4 drugs.  Specifically, we set up a two-dimensional matrix of 1-

, 2-, 3-, or 4-drug combinations, with the concentration of one or more drugs increasing 

along each direction of the plate. In the presence of the drugs, we grew the cells for 10-18 

h at 30 degrees C, with shaking at 1000 rpm on four identical vibrating plate shakers.  We 

measured the absorbance at 600 nm (A600) at time intervals dt (dt = 20 min for E. coli, 30 

min for S. aureus) using a Wallac Victor-2 1420 Multilabel Counter (Perkin Elmer) 

combined with an automated robotic system (Twister II, Caliper Life Sciences) to 

transfer plates between shakers and the reader.   

 

Growth Rate Calculation 
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From the time series of A600, we determined growth rates by fitting the early exponential 

phase portion of curves (0.01 < A600 <0.1) to an exponential function (MATLAB 7.6.0 

curve fitting toolbox, The Mathworks).  We normalized growth rates in the presence of 

single drugs (gi) or multiple drugs (gij, gijk, gijkl) by the growth rate of cells in the absence 

of drugs.  An example growth curve is shown in Figure S2.  Standard errors of the fitted 

growth parameter are used to estimate uncertainty in growth rates. 

 

To minimize the small effects of day-to-day fluctuations in drug efficacy (typically <5%), 

we generated a standard dose-response curve (and IC50 value) for each drug by 

combining all data involving only exposure to that drug.  In all subsequent three and four-

drug experiments, we re-measured the IC50 value for each drug and scaled all 

concentrations to ensure it agreed with the IC50 from the standard curve.  Single drug (gi) 

and pairwise (gij) growth rates at a given set of concentrations were then estimated by 

interpolating, if necessary, between data points measured at nearby concentrations.  
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Figure Legends 
 

Fig. 1.  Growth in response to multiple drugs can be predicted from the growth in 

response to those drugs singly and in pairs using maximum entropy (A) Schematic 

axes showing that the normalized growth responses of bacteria to pairs of drugs (g12, g23, 

g13) are used to predict the normalized growth response to all three drugs (g123).  We use 

the three-drug case as an example; but growth in response to any number (N) of drugs 

can be predicted, as long as we know all pairwise responses.  (B) We estimate growth in 

the presence of drugs using nonlinear least squares fitting to optical density time series. 

For each drug i, we define a random variable Xi whose expectation value is equal to the 

growth gi.  (C) We made predictions by first estimating the maximum entropy 

distribution, P, using growth rate data from cells exposed to single drugs and drug pairs.  

The distribution takes an exponential form parameterized by resilience coefficients (hi, 

blue circles) and drug-drug coupling coefficients (Jij, pink boxes) that characterize the 

single drug response and the response to pairs of drugs, respectively. The resilience and 

coupling coefficients are chosen to ensure the moments, <Xi> and <XiXj>, of Ppair match 

the two-drug growth rate data at each drug dosage.  After determining the maximum 

entropy distribution, the N-drug growth response can be predicted by calculating the 

expectation values of the product X1X2...XN.  We find that these expectation values are 
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related to the moments <Xi> and <XiXj> by simple algebraic expressions (Supporting 

Information). 

 

 

 

 

 

 

 

 

Fig. 2. Three- and 4-Drug Interactions Arise from the Accumulation of Pairwise 

Interactions. Maximum entropy predictions of growth, using only data from pairwise 

drug interactions, match experimental growth responses in E. coli (A-C) and S. aureus 

(D) in the presence of 3- (A, B, D) and 4-drug combinations (C).  In each panel, lower 

insets are heat maps showing the model’s predictions (left) and experimental data (right) 

for various planes through the three- or four-dimensional spaces of drug concentrations. 

White squares indicate drug dosages for which the maximum entropy algorithm did not 

converge.  Experimental error bars, 95% confidence intervals from nonlinear fitting; 

Error bars on predictions, +/- 2 standard deviations of an ensemble of predictions from 

maximum entropy distributions calculated with random initial conditions (Supporting 

Information). Cm, chloramphenicol; Dox, doxycycline; Ery, erythromycin; Kan, 

kanamycin; Linc, lincomycin; Ofl, ofloxacin; Sal, salicylate; Tet, tetracycline; Tmp, 

trimethoprim. 
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Fig. 3. Predictions Highlight Ways That Pairwise Interactions Accumulate to Yield 

Higher-Order Interactions Total drug interactions and pairwise drug interactions for 3-

drug (A-D) and 4-drug combinations (E, F) in E. coli (A-C, E, F) and S. aureus (D). Each 

panel shows pairwise (all panels, left, I-ij = gij-gigj and three-drug (A-D, right, g123-

g1g2g3) or four-drug (E-F,right, g1234-g1g2g3g4) interactions at a given drug dosage.  Light 

bars, maximum entropy prediction; dark bars, experimental result.  Shaded portions of 

each plot indicate regions of approximately additive behavior (add, |interaction| < 0.1).  

In all panels, antagonism (antag) and synergy (syn) labels correspond to interactions of 

+0.3 and -0.3, respectively.  Error bars, +/- standard error (Supporting Information).  

Interactions that cannot be statistically explained from the pairwise predictions are less 

than 0.05 (units of relative growth rate) in all cases (see also Figure S18).  Drug 

combinations:  A, Chloramphenicol-Erythromycin-Trimethoprim; B, Chloramphenicol-

Ofloxacin-Trimethoprim; C, Chloramphenicol-Ofloxacin-Salicylate; D, Kanamycin-

Erythromycin-Tetracycline; E, Doxycycline-Erythromycin-Lincomycin-Salicylate; F, 

Chloramphenicol-Ofloxacin-Trimethoprim-Lincomycin. 

Table Legends 
 

Table 1.  Comparison of Pairwise Approximation with Independent Model 

Coefficient of determination, R2, is defined as R2 = 1-SSerr / SStot, where SSerr is the 

residual sum of squares between model and data, and SStot is the total sum of squares 

(proportional to the variance of the experimental measurements).  ΔAIC is the difference 

in AIC values between the pairwise and the independent model.  The last column 

provides the Akaike weight in favor of the pairwise model (Supporting Online Material). 

** R2<0, which indicates very poor fit (the mean of the data provides a better fit than the 

model) 

 

Table 2.  Validation of Pairwise Approximation.  fc represents the fraction of total 

three-drug correlations that are captured by the pairwise model.  For each drug dosage 

containing nonzero amounts of all three drugs, we calculated the maximum entropy 

distributions PN (N=1,2,3), which are consistent with all measurements involving N or 
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fewer drugs.  We then calculated the multi-information I3 = S1 - S3 , where Si is the 

entropy of the distribution Pi.   The fraction of total correlations captured by the pairwise 

model is then 

fc ≡
I2
I3  

where sums run over all data points for a given 3-drug combination.  An fc of 1 would 

indicate that the pairwise model captured all higher-order correlations or, equivalently, 

that interactions involving exactly N drugs (for N>2) do not contribute to the multi-drug 

effects. Cm, chloramphenicol; Dox, doxycycline; Ery, erythromycin; Kan, kanamycin; 

Linc, lincomycin; Ofl, ofloxacin; Sal, salicylate . Tet, tetracycline; Tmp, trimethoprim.  
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Table 1: 

 

Drug 
Combination 

R2 

(Pairwise) 
R2

(Independent) 
ΔAIC Weight for 

Pairwise 

Sal-Ery-Cm 0.93 0.82 -109.0 > 0.999 

Cm-Ery-Tmp 0.87 0.87 -5.9 0.95 

Cm-Ofl-Sal 0.74 ** -909.4 > 0.999 

Cm-Ofl-Tmp 0.90 0.87 -14.4 > 0.999 

Dox-Ery-Linc 0.86 0.88 51.5 < 0.001 

Dox-Ery-
Linc-Sal 

0.72 ** -161.6 > 0.999 

Linc-Cm-Ofl-
Tmp 

0.85 0.70 -83.4 > 0.999 

All Data 0.90 0.33 -2233.2 > 0.999 

 

 



 

Table 2: 

 

Drug Combination fc

E. coli 

Sal-Ery-Cm 0.95 

Cm-Ery-Tmp 0.89  

Cm-Ofl-Sal 0.98 

Cm-Ofl-Tmp 0.95 

Dox-Ery-Linc 0.94 

S. aureus 

Tet-Kan-Ery 0.93 

Total (All Drugs) 0.97 
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Figure S1: Table of Drugs, with corresponding classes and modes of action.

1 Table of Drugs and Growth Curve

A table of all drugs used is shown in Figure S1, and an example growth curve
is shown in Figures S2.
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Figure S2: Growth Rate Measurement. Time series of A600 vs. time. Solid line,
fit to exponential function. Dashed lines, region of exponential growth. Growth
rate is given by the slope of the line.

2 Supporting Text

2.1 Statistical Framework for Drug Combinations

The ultimate goal of our analysis is to establish a predictive relationship be-
tween the effects of small drug combinations (1- or 2-drug combinations) and
the effects of larger multi-drug combinations. Because mechanistic models for
large intracellular networks are often not tractable, we introduce a statistical
framework which, by construction, associates drug interactions to correlations
between stochastic variables. The model offers one way of establishing testable
predictions by first mapping experimental measurements to moments of a joint
probability distribution. The problem is then reduced to estimating the un-
known distribution, which can be achieved using statistical techniques, such
as entropy maximization, or (in principle) by incorporating other assumptions
about the underlying physical system.

Specifically, we assume that interactions between N drugs can be modeled
as correlations between N continuous stochastic variables, Xi, (i = 1...N), such
that the observed growth of cells (g1,2..N) in the presence of N drugs is given by

g1,2..N = 〈X1X2...XN 〉 (S1)

where brackets represent an expectation value over an ensemble described by
the unknown probability density P (x1, x2, ...xN ). If the variables Xi are uncor-
related, the growth reduces to a product

g1,2..N = 〈X1〉〈X2〉...〈XN 〉 ≡ g1g2...gN , (S2)
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which is equivalent to Bliss independence, a common phenomenological model
used in pharmacology to describe non-interacting drugs [2].

We would like to ask whether pairwise interactions between drugs can be
used to predict the effects of larger combinations of drugs. Within the above
framework, predicting effects of drug combinations reduces to estimating mo-
ments of the unknown distribution P (x1, x2, ...xN ) using data on interactions
between pairs of drugs. Therefore, to test our hypothesis, we must estimate
higher-order moments of P (x1, x2, ...xN ) (the effects of a multi-drug combina-
tion) using only the lower order moments (the effects of two-drug combinations).
The question, then, is how does one estimate, without mechanistic assumptions
or a physical model, the unknown probability distribution P (x1, x2, ...xN ) given
only information about some collection of moments of that distribution,

〈fj〉 ≡

∫ b

a

∫ b

a

...

∫ b

a

P (x1, x2, ...xN )fj(x1, x2, ...xN )dx1dx2...dxN = αj . (S3)

Entropy maximization offers one method of solving this problem by choosing
a distribution consistent with known moments but that does not incorporate
additional statistical structure [18, 19, 33].

In what follows, we restrict ourselves for illustrative purposes to the three-
drug case, though the results are easily generalizable to any larger drug combi-
nation. To estimate P (x1, x2, x3), we maximize the entropy, S(P ), subject to
the known moment constrains. The entropy, S(P ), is defined (up to an additive
constant) as

S(P ) = −

∫ b

a

∫ b

a

∫ b

a

P (x1, x2, x3) log

(

P (x1, x2, x3)

q(x1, x2, x3)

)

dx1dx2dx3, (S4)

where q(x1, x2, x3) is a continuous prior distribution that accounts for an a priori
knowledge gleaned from, for example, physical considerations or experience.
The maximization amounts to minimizing the Kullback-Leibler divergence [35]
between the distributions P and q, subject to constraints on the moments. We
choose the interval [a, b] to be finite and take q(x1, x2, x3) to be a constant,
which is equivalent to assuming a uniform prior distribution. We stress that
our results do not depend on a specific choice of [a, b], as long as some minimal
conditions are met (see below).

To proceed with the estimation of P (x1, x2, x3), we first measured the growth
response to each drug i alone (gi) and to all pairs of drugs, (gij). To predict the
effects of a given three-drug combination, for example, we measured g1, g2, g3,
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g12, g13, and g23. The corresponding constraints on the distribution are simply

〈f1〉 ≡

∫ b

a

∫ b

a

∫ b

a

P (x1, x2, x3)x1dx1dx2dx3 = g1,

〈f2〉 ≡

∫ b

a

∫ b

a

∫ b

a

P (x1, x2, x3)x2dx1dx2dx3 = g2,

〈f3〉 ≡

∫ b

a

∫ b

a

∫ b

a

P (x1, x2, x3)x3dx1dx2dx3 = g3,

〈f4〉 ≡

∫ b

a

∫ b

a

∫ b

a

P (x1, x2, x3)x1x2dx1dx2dx3 = g12,

〈f5〉 ≡

∫ b

a

∫ b

a

∫ b

a

P (x1, x2, x3)x1x3dx1dx2dx3 = g13,

〈f6〉 ≡

∫ b

a

∫ b

a

∫ b

a

P (x1, x2, x3)x2x3dx1dx2dx3 = g23.

(S5)

We can use Lagrange multipliers (λ0, h1, h2, h3, J12, J13, J23) to maximize
the entropy S(P ) subject to these constraints, which leads to

P (x1, x2, x3) =
1

Z
exp (h1x1 + h2x2 + h3x3 + J12x1x2 + J13x1x3 + J23x2x3) ,

(S6)
where Z is a constant (related to λ0) that normalizes the distribution. It can
be shown that, in general, the entropy of a distribution calculated in this way
corresponds to the global maximum, if it exists [19],[33].

We have labeled the Lagrange multipliers as hi and Jij in accordance with
notation commonly used for the well-known Ising model, which takes a similar
form [36]. In the context of our drug interaction model, hi encodes the single-
drug growth response and Jij encodes information about deviations from Bliss
independence for a given drug pair, with Jij > 0 indicating antagonism and
Jij < 0 indicating synergy. We call the parameter hi the resilience coefficient
and Jij the drug-drug coupling coefficient between the drugs i and j; they char-
acterize the response to single drugs and to pairs of drugs, respectively (Fig.
S3). Intuitively, the value of the resilience coefficient reflects the cell growth in
response to a given concentration of one drug (Fig. S3). The resilience coef-
ficient decreases with increasing drug concentration. The drug-drug coupling
coefficient, J , reflects, for each drug dosage, the nature of interactions taking
place between two given drugs (Fig. S3). For example, when J is zero, there
exists no drug-drug coupling and the two drugs act independently. When J
is positive, the drug pair is antagonistic and for negative values, the pair is
synergistic.

2.1.1 Growth Rate Predictions and Uncertainties

In practice, we calculate the parameters hi and Jij from experimental data
using a standard numerical technique that involves minimizing a dual space
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Lagrangian [37]. The minimization occurs on a convex surface and can be ac-
complished with any unconstrained optimization algorithm. For each dosage of
a given three- or four-drug combination, we performed the optimization 50 times
(for 3 drugs) or 25 times (for four drugs) starting from random initial conditions
drawn from a uniform distribution on the interval [−0.5, 0.5]. Nonphysical pre-
dictions (g < 0, g > 1) occasionally arise from strongly synergistic or strongly
antagonistic combinations, and these are set to 0 (no growth) or 1 (maximum
growth), respectively. While the minimization should not be prone to errors
due to local minima, we find that fits of similar quality can be achieved using
a range of parameter values; hence, there is some uncertainty in the location
of the true minimum. Taking random initial conditions allows us to estimate
this uncertainty and offer more reliable predictions. All predictions represent
the mean of these trials. Error bars of the growth predictions in Figure 3 are
±2σ, with σ the standard deviation of the distribution of trials. Standard errors
of the mean, which are between 5 and 8 times smaller, could be used instead
to give a true estimate of the error associated with each prediction, but they
leave the reader without a sense of σ. Uncertainties in the prediction of drug
interactions, I1..N ≡ g12..N − g1g2...gN , (Figure 4) must incorporate standard
errors from single drug measurements (gi). Therefore, the error bars represent
± 1 standard error of the mean. For distributions of 25 or 50 trials, the standard
error associated with the prediction of the first term (g12..N ) is much smaller
than that of the second term (g1g2...gN). Uncertainties of the drug interaction
predictions are therefore dominated by standard errors in the estimates of single
drug growth rates gi appearing in the second term.

2.1.2 Choosing the State Space

The calculation of the maximum entropy distribution requires a specific choice
of state space, [a, b], for each continuous stochastic variable Xi. First, we note
that if the boundaries are chosen such that [a, b] = [−∞,∞] - that is, the
variables take values on the real line - a (normalizable) distribution of the form
Equation S6 does not exist, because there are no constraints on the variances,
〈X2

i 〉. In practice, this difficulty can be circumvented by choosing [a, b] to be
finite, which puts implicit limits on the variance of each variable. While this
amounts to an additional assumption, we find empirically that the predictions of
higher moments from lower moments do not depend on the choice [a, b] as long
as i) the distribution of the form Equation S6 is normalizable and ii) a solution
to Equations S5, S6 can be found for some choice of Lagrange multipliers. The
specific values of the Lagrange multipliers will of course depend on the choice of
state space, but the relationship between higher moments and lower moments
conforms to that given by Issesrlis’ theorem in all cases where a suitable solution
to Equation 5 is found. We return to this point below.

Figures S4, S5 illustrate the fit of models with different choices of (a, b) to
all two-drug and single drug data. We note that these are not predictions, but
simply fits to examine whether a solution to Equations S5, S6 can be found.
Figure S4 illustrates that choices with (a, b) = (0, b) for b > 0 do not provide
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an accurate description of many of the measured drug interactions; that is, a
valid solution cannot be found. On the other hand, the fit improves significantly
when a < 0 and b > 0 (Figure S5). For sufficiently large |b − a|, the fit again
becomes poor, likely because of the failure of numerical integration over the
increasingly large state space. Hence, for all three-drug calculations, we choose
(a, b) = (−3, 4) (Figure S5, lower left panel), which provides an excellent fit
(R2 > 0.99) to the pairwise data, indicating that a solution to Equations S5, S6
is achievable. This choice is not unique, and other choices (e.g. (a, b) = (−9, 10))
are possible but must utilize more computational resources to calculate integrals
at the same level of accuracy. For similar reasons, we choose a smaller range
(a, b) = (−1, 2) for four-drug predictions to allow for faster computation of the
numerical integrals. The final predictions do not depend on these choices of
state space, but instead only on the measured growth rates for drug pairs and
single drugs. The exact same results are also obtained if we choose the variables
to be discrete ”spin-like” variables, as long as the value of the spin is sufficiently
large (e.g. spin = ±4). In the latter case, the integrals become sums that are
easily calculated.

2.1.3 Example Maximum Entropy Distributions

We illustrate example (marginal) maximum entropy distributions calculated
for the drug combination salicylate, erythromycin, and chloramphenicol in Fig-

ures S6, S7. Figure S6 shows the pairwise, P2(x1, x2) ≡
∫ b

a
P (x1, x2, x3)dx3 ,

and single variable, P1(x1) ≡
∫ b

a
P (x1, x2, x3)dx3dx2, marginal distributions for

the three-drug combination at a given dose of each drug. In this figure, the
concentration of chloramphenicol is 0, so these distributions describe the effects
of salicylate and erythromycin alone (right panels) and in combination (left
panel). Similarly, Figure S7 shows the pairwise and single variable marginal
distributions for erythromycin and chloramphenicol in the absence of salicylate.
Deviations from the uniform distribution ensure that the experimental measure-
ments of pairwise drug interactions (2-body correlations) and single-drug effects
(single variable means) are appropriately described by expectation values of P .

2.1.4 Isserlis’ Theorem Describes Observed Moment Relationships

Empirically, we find that the moment relationships derived from our experiments
are consistent with the well-known Isserlis’ formula [38],

〈XiXjXk〉 = 〈Xi〉〈XjXk〉+ 〈Xj〉〈XiXk〉+ 〈Xk〉〈XiXj〉−2〈Xi〉〈Xj〉〈Xk〉, (S7)

or in terms of the growth measurements,

gijk = gigjk + gjgik + gkgij − 2gigjgk. (S8)

Similar expressions hold for higher order moments. For example,

gijkl = gilgjk + gikgjl + gijgkl − 2gigjgkgl. (S9)
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Isserlis’ equations were originally proven for jointly distributed Gaussian vari-
ables, but they have also been extended to certain classes of non-Gaussian vari-
ables [39]. These relationships can be derived from the maximum entropy re-
sults using first order perturbation theory when the drug-drug coupling is small
compared to the single drug effects; they are exact if the distribution P (x) is
Gaussian. The result (Figure S8) is perhaps not surprising, given that the choice
of finite [a, b] implicitly constrains the variance of the distributions.

Consider, for example, that the same relationship can also be achieved in the
following way. Assume that the variables are constrained such that 〈X2

i 〉 = σ2
i

for some choice of constants σ2
i > 0. Under these conditions, the maximum

entropy distribution for variables defined on the real line is a Gaussian [33].
Therefore, Isserlis’ theorem will describe the moment relationships, and the
result will not depend on the specific choices of σ2

i , as long as they are sufficiently
large that a distribution satisfying all moment constraints exists.

The success of Equation S8 and, more generally, Isserlis’ theorem in pre-
dicting the effects of large drug combinations is, in itself, a striking result. It
suggests that one could arrive at the same predictions by assuming, at the
outset, that the variables Xi come from a multi-variate Gaussian distribution.
Such a relationship could arise, for example, from the Central Limit Theorem
if one could argue that the underlying stochasticity of intracellular networks
contributing to the multi-drug response arises from a sum of independent, or
nearly independent, stochastic variables. This remains an open question for
future work. Nevertheless, in practice, the simplicity of the algebraic expres-
sions given by Isserlis renders the method useful even to those without extensive
computational resources or experience.

2.1.5 Drug With Itself

In pharmacology, Bliss independence is well-known to be a poor model for the
effects of a two drugs with highly similar mechanisms. In particular, it is of-
ten noted that Bliss independence cannot accurately describe an experiment
where a drug is divided into two volumes which are then combined (i.e. the
“interactions” of a drug with itself). Our results extend Bliss independence to
account for interactions between drug pairs, which raises the question of whether
the model can more accurately describe the “interaction” of a drug with itself.
Applying equation 8 to a such a scenario, we have

g(c1 + c2 + c3) =g(c1)g(c2 + c3) + g(c2)g(c1 + c3)+

g(c3)g(c1 + c2)− 2g(c1)g(c2)g(c3),
(S10)

where g(x) is the growth in the presence of a drug at a concentration x. One
solution to this equation is given by an exponential function, which is a reason-
able model for the dose-response curve of many drugs over limited concentration
ranges. However, dose-response curves are typically modeled with a Hill func-
tion, g(x) = (1 + (x/K)n)−1, which is consistent with our single-drug data but
is not a solution of equation S10. To explore the usefulness of equation S10 for
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describing typical Hill-like dose-response relationships, we consider Hill func-
tions with Hill coefficients of n = 1, n = 2, and n = 5 (and K = 1 without loss
of generality). We then compare the predictions of equation S10 and the pre-
dictions of Bliss independence (given by g(c1 + c2 + c3) = g(c1)g(c2)g(c3)) with
the true Hill function (Figure S9). The pairwise model significantly improves
upon Bliss independence, especially when Hill coefficients are near 1, but it can
not perfectly capture steep features of the dose-response curve for larger n and
high drug dosages. These results suggest that the model may lose accuracy at
high dosages when drug combinations involve drugs with identical mechanisms
of action and steep dose-response curves. In practice, we find that dose response
curves rarely have n > 2, and furthermore, the method works well even when
drugs have similar–but not identical–modes of action (See Dox-Ery-Linc combo
in main text, Figure 3). Therefore, this theoretical limitation is unlikely to be
relevant in most practical situations.

2.2 Failure and Success of Bliss Independent Model

While our pairwise model performs significantly better, on the whole, than the
Bliss independent model, we found that some combinations of three drugs may
nevertheless be appropriately modeled with Bliss independence. Figure S10
compares predictions from Bliss independence (left) with those from the pair-
wise model (right) for two 3-drug combinations. In the top drug combination
(Cm-Ofl-Sal), the pairwise approximation significantly outperforms the inde-
pendent model. On the other hand, in the lower panels (Dox-Ery-Linc), the
results from both models are highly correlated (r ≈ 0.95) and both provide
reasonable fits to the data. The latter result is particularly interesting given
the strong interactions that take place between doxycycline-lincomycin (strong
suppression) and doxycyline-erythromycin (strong synergy) when used in pairs
(see Figure 2).

2.3 Akaike Information Criteria and Model Selection

To statistically compare the pairwise model with the independent model, we
use standard model-selection techniques [40] (see Table 1 for results). Specif-
ically, we assume that the experimental errors are independent and Gaussian
distributed with unknown variance σ2. We confirm approximate normality of
residuals in Figure S11. We then calculate for each model the Akaike Informa-
tion Criteria, which is given by

AIC = −2 log(L(ĉ|y)) + 2n (S11)

where log(L(ĉ|y)) is the log likelihood function, y is the data, c is maximum
likelihood estimate of the free parameters of the model (in this case, σ2), and
n is the number of free parameters (n = 1 for both models, corresponding
to the unknown error variance). The AIC is an estimate of the expectation
value of the relative Kullback-Leibler (KL) divergence between the fitted model
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and the “true mechanism” generating the observed data. The model with the
lowest AIC value among a set of models is considered the best model in that
it minimizes the KL divergence between the model and statistical mechanism
underlying the data. For independent Gaussian errors, AIC reduces (up to an
additive constant) to

AIC = −N log(σ̂2) + 2n, (S12)

where N is the number of observations and σ̂2 is the maximum likelihood esti-
mate of the variance. In practice, we use a small sample estimator of AIC that
includes a bias correction term

AIC = −2 log(L(ĉ|y)) + 2n+
2n(n+ 1)

N − n− 1
. (S13)

The differences in AIC values between the pairwise model and the Bliss inde-
pendent model can be converted to an Akaiki weight in favor of the pairwise
model,

w =
exp(−δ/2)

exp(−δ/2) + 1
(S14)

where δ ≡ AICpair −AICind. Because exp(−δ/2) is proportional to the likeli-
hood of the pairwise model given the data, the weight w can be interpreted as
a measure of the evidence in favor of the pairwise model as the best of the two
models.

2.4 Predictions of 3-Drug and 4-Drug Effects

Figures S12 - S16 show predictions for three-drug (Figures S12 - S15) and four-
drug (Figure S16) combinations calculated using the maximum entropy distri-
butions (or, equivalently, using Equation S7). Each figure includes heat maps
comparing experimental growth to theoretical predictions (left hand side) as
well as a direct comparison of predictions vs. experiments.

2.5 Combinatorial Experiments Testing 3-Drug Predic-
tions

In addition to exploring the entire space of 3-drug concentrations for the drug
combinations listed above, we have also performed combinatorial experiments to
test the predictions of our model on a broad range of 3-drug combinations, each
at a single dosage. Each combinatorial experiment involves N drugs, each at a
single concentration, D1, D2, ...DN . In each experiment, we test all

(

N
3

)

possible
3-drug combinations and compare the experimental results to predictions from
our pairwise model. We choose N to be 5, 6, or 7 and performed 5 combinatorial
experiments yielding a total of 93 unique 3-drug combinations and 120 unique
dosage combinations.

A table of all drug combinations is shown at the end of the SI document, and
the corresponding comparisons between predictions and experiment are shown
in Figures S17, S18 (inset, which includes error bars). The pairwise model
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performs remarkably well (R2 = 0.95) and significantly outperforms the naive
independence model (R2 = 0.29), which demonstrates the need to account for
pairwise interactions.

To estimate the frequency of pure 3-body interactions, we also include a his-
togram (Figure S18, main figure) of the statistical deviations from the pairwise
predictions. These deviations, which cannot be statistically explained by the
pairwise approximation, occur when the 95 percent confidence interval of the
difference δ = gexp − gpred, where gexp is the relative growth from experiment
and gpred is the predicted relative growth, does not contain 0. The difference
between the boundary of this confidence interval and 0 is defined to be the
deviation, ∆I3 (units are relative growth rate); this deviation may arise from
pure 3-drug interactions. In 74 of the 120 drug combinations, the deviation is
zero (∆I3 = 0). In the remaining 46 combinations, the deviations (unexplained
drug interactions) are very small (mean= 0.034± 0.005), with the maximum of
∆I3,max = 0.12.
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Figure S3: Experimentally determined growth rates, resilience coefficients (h),
and coupling coefficients (J), of maximum entropy distribution for pairwise
drug interactions. Growth rate data and maximum entropy coefficients for drug
pairs (A) Doxycycline-Erythromycin (synergistic), (B) Doxycycline-Lincomycin
(weakly antagonistic), and (C) Erythromycin-Lincomycin (strongly antagonis-
tic). In each panel, top plots show heat maps of cell growth in the presence
of two drugs. Cell growth is normalized by growth in the absence of drugs.
Warmer colors indicate high growth rates, whereas cooler colors indicate slower
growth rates. Bottom left, resilience coefficients, h, as a function of each drug
in the combination. Decreasing the resilience coefficient, h, corresponds to a
decrease in growth rate. Error bars: standard error of replicates (smaller than
data points). Bottom right, drug-drug coupling coefficients, J , as a function of
drug concentration for each drug pair. J > 0 corresponds to antagonism, J < 0
to synergy, and J = 0 to additivity. 12
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Figure S4: Fitting two-drug Data Using State Spaces with a = 0, b > 0. Upper
left, b = 1, upper right, b = 3, lower left, b = 5, lower right, b = 5. Different
symbols represent growth of cells in response to drug pairs drawn from different
three-drug combinations (Sal-Ery-Cm, squares; Cm-Ery-Tmp, circles; Cm-Ofl-
Sal, upright triangles; Cm-Ofl-Tmp, leftward triangles; Dox-Ery-Linc, stars).
Black lines, line of slope 1 indicating perfect fit. Note that many data points in
the lower right panel fall outside of the range of the plots.
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Figure S5: Fitting two-drug Data Using State Spaces with a < 0, b > 0. Upper
left, (a, b) = (−0.5, 1.5), upper right, (a, b) = (−2, 3), lower left, (a, b) = (−3, 4),
lower right, (a, b) = (−19, 20). Different symbols represent growth of cells in re-
sponse to drug pairs drawn from different three-drug combinations (Sal-Ery-Cm,
squares; Cm-Ery-Tmp, circles; Cm-Ofl-Sal, upright triangles; Cm-Ofl-Tmp, left-
ward triangles; Dox-Ery-Linc, stars). Black lines, line of slope 1 indicating
perfect fit.
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Figure S6: Example Maximum Entropy Distrubitions: Pairwise,

P2(x1, x2) ≡
∫ b

a
P (x1, x2, x3)dx3 (left panel), and single variable,

P1(x1) ≡
∫ b

a
P (x1, x2, x3)dx3dx2 (right panels), marginal distributions for

the three-drug combination salicylate (2 mM), erythromycin (25µg/mL), and
chloramphenicol (0µg/mL). Vertical dashed lines indicate averages 〈xi〉, which
correspond to single drug growth rates gi. Drugs are arbitrarily labeled as 1
(salicylate), 2 (erythromycin), and 3 (chloramphenicol).
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Figure S7: Example Maximum Entropy Distrubitions: Pairwise,

P2(x1, x2) ≡
∫ b

a
P (x1, x2, x3)dx3 (left panel), and single variable,

P1(x1) ≡
∫ b

a
P (x1, x2, x3)dx3dx2 (right panels), marginal distributions for

the three-drug combination salicylate (0 mM), erythromycin (25µg/mL), and
chloramphenicol (1µg/mL). Vertical dashed lines indicate averages 〈xi〉, which
correspond to single drug growth rates gi. Drugs are arbitrarily labeled as 1
(erythromycin), 2 (chloramphenicol), and 3 (salicylate).
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Figure S17: Comparison of Predictions with Experiments for the 3-drug Combi-
natorial Experiments. Each number corresponds to a 3-drug combination from
the table at the end of the SI material.
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Figure S18: Histogram of Deviations from Pairwise Predictions. Deviations
from the pairwise predictions occur when the 95 percent confidence interval
of the difference δ = gexp − gpred, where gexp is the relative growth from ex-
periment and gpred is the predicted relative growth, does not contain 0. The
difference between the boundary of this confidence interval and 0 is defined to
be the deviation from pairwise predictions (units are relative growth rate). In-
set: Comparison of Predictions with Experiments for the 3-drug Combinatorial
Experiments. Error bars are ± standard error.
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(*9 R/,S )* O$4 )** K-7 V

(*X R/,S )* O$4 )** K5 *;X

(*V R/,S )* M+%' );V C"H *;)V
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((( O$4 )** M+%' );V C"H *;)V

(() O$4 )** M+%' );V K-7 V

((9 O$4 )** M+%' );V K5 *;X

((X O$4 )** C"H *;)V K-7 V

((V O$4 )** C"H *;)V K5 *;X

((W O$4 )** K-7 V K5 *;X

((U M+%' );V C"H *;)V K-7 V

((Y M+%' );V C"H *;)V K5 *;X

((8 M+%' *;)V K-7 V K5 *;X

()* C"H *;)V K-7 V K5 *;X
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