102 research outputs found

    Role of Lashuna Rasayana in Margavaranaja Pakshagahta - A Case Study

    Get PDF
    The health of an individual is accessed by the optimum structural and functional wellbeing. The functional ability of the body may be physiological or physical is attributed to Vata. In morbidity, the same Vatadosha will affect the functionality, in terms of motor or sensory functions. The wide spectrum of disorders due to morbid Vatadosha is put under the heading of Vatavyadhi. Depending upon the affected part of the body further it is categorized as, Ekangavata, Sarvangavata and Pakshaghata. In Pakshaghata Chestanivrutti of one half of the body either left or right may be observed.[1] Pakshghata is one among 80 Nanatmaja Vyadhi.[2] There are three distinct Nidana for Pakshaghata. Dhatukshayaja, Margavarana and Swakopa.[3] Margavarana refers to the obstruction of the Raktamarga. Prime causative factors for Margavarana is Santarpanajanya Nidana leads to Dhamani Pratichyaya ends up in Pakshaghata. In modern science it is better understood as stroke syndrome. Lashunsa Rasayana4 is considered to be best in case of Vata Vyadhi. It is even indicated in Pakshaghata. In the present study role of Lashunsa Rasayana is done on the patients suffering from Margavaranaja Pakshaghata

    Safety and health index development for formulated product design: Paint formulation

    Get PDF
    Over the years, safety and health effects among consumers due to the exposure of formulated products have been reported. Thus, there is a need for systematic methodologies to assess the safety and health effects of the candidate’s ingredients in the early stages of formulated product design. Therefore, an index-based methodology was proposed to assess the safety and health effects in formulated product design. Product Safety and Health Index (PSHI) highlights the health sub-indexes based on the exposure routes including eye, inhalation, ingestion, and dermal. Each exposure route has its corresponding health sub-indexes that have to be applied. There are also new sub-indexes introduced for ingestion and dermal exposure. A case study on paint formulation was used to illustrate the developed methodology. The results show that the newly proposed index is able to identify hazardous chemical ingredient(s) with its corresponding adverse safety and health effects

    Dynamics of nanoscale droplets on moving surfaces

    Get PDF
    We use molecular dynamics (MD) simulations to investigate the dynamic wetting of nanoscale water droplets on moving surfaces. The density and hydrogen bonding profiles along the direction normal to the surface are reported, and the width of the water depletion layer is evaluated first for droplets on three different static surfaces: silicon, graphite, and a fictitious superhydrophobic surface. The advancing and receding contact angles, and contact angle hysteresis, are then measured as a function of capillary number on smooth moving silicon and graphite surfaces. Our results for the silicon surface show that molecular displacements at the contact line are influenced greatly by interactions with the solid surface and partly by viscous dissipation effects induced through the movement of the surface. For the graphite surface, however, both the advancing and receding contact angles values are close to the static contact angle value and are independent of the capillary number; i.e., viscous dissipation effects are negligible. This finding is in contrast with the wetting dynamics of macroscale water droplets, which show significant dependence on the capillary number

    CYLD Enhances Severe Listeriosis by Impairing IL-6/STAT3-Dependent Fibrin Production

    Get PDF
    The facultative intracellular bacterium Listeria monocytogenes (Lm) may cause severe infection in humans and livestock. Control of acute listeriosis is primarily dependent on innate immune responses, which are strongly regulated by NF-kappa B, and tissue protective factors including fibrin. However, molecular pathways connecting NF-kappa B and fibrin production are poorly described. Here, we investigated whether the deubiquitinating enzyme CYLD, which is an inhibitor of NF-kappa B-dependent immune responses, regulated these protective host responses in murine listeriosis. Upon high dose systemic infection, all C57BL/6 Cyld(-/-) mice survived, whereas 100% of wildtype mice succumbed due to severe liver pathology with impaired pathogen control and hemorrhage within 6 days. Upon in vitro infection with Lm, CYLD reduced NF-kappa B-dependent production of reactive oxygen species, interleukin (IL)-6 secretion, and control of bacteria in macrophages. Furthermore, Western blot analyses showed that CYLD impaired STAT3-dependent fibrin production in cultivated hepatocytes. Immunoprecipitation experiments revealed that CYLD interacted with STAT3 in the cytoplasm and strongly reduced K63-ubiquitination of STAT3 in IL-6 stimulated hepatocytes. In addition, CYLD diminished IL-6-induced STAT3 activity by reducing nuclear accumulation of phosphorylated STAT3. In vivo, CYLD also reduced hepatic STAT3 K63-ubiquitination and activation, NF-kappa B activation, IL-6 and NOX2 mRNA production as well as fibrin production in murine listeriosis. In vivo neutralization of IL-6 by anti-IL-6 antibody, STAT3 by siRNA, and fibrin by warfarin treatment, respectively, demonstrated that IL-6-induced, STAT3-mediated fibrin production significantly contributed to protection in Cyld(-/-) mice. In addition, in vivo Cyld siRNA treatment increased STAT3 phosphorylation, fibrin production, pathogen control and survival of Lm-infected WT mice illustrating that therapeutic inhibition of CYLD augments the protective NF-kappa B/IL-6/STAT3 pathway and fibrin production

    Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts

    Get PDF
    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al”assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2‱−, generate Al superoxides [Al(O2‱)](H2O5)]+ 2. Semireduced AlO2‱ radicals deplete mitochondrial Fe and promote generation of H2O2, O2 ‱ − and OH‱. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances

    Co-composting: An Opportunity to Produce Compost with Designated Tailor-Made Properties

    Get PDF
    AbstractCo-composting is a technique that allows the aerobic degradation of organic waste mixtures, primarily aiming at obtaining compost that can be used as fertiliser or soil amendment. As compared to the typical composting activity, the main difference is not merely the use of more than one feedstock to start and sustain the biodegradation process, but also the possibility of combining various kinds of waste to obtain 'tailored' products with designed properties, or to reclaim and valorise natural resources, such as degraded soils or polluted soils and sediments. Set up of appropriate co-composting protocols can be a way to optimise the management of waste produced by different sectors of agriculture and industry and also from human settlements. Different formulations can not only optimise the biodegradation process through the adjustment of nutrient ratios, but also lead to the formation of products with innovative properties. Moreover, co-composting can be a technique of choice for the reclamation of soils degraded by intensive agriculture or contaminated soils and sediments. In fact, an appropriate mix of organic waste and soils can restore the soil structure and induce fertility in nutrient-depleted soils, and also remediate polluted soils and sediments through degradation of organic pollutants and stabilisation of heavy metals. While the selection of different mixes of organic waste may lead to the design of composts with specific properties and the potential valorisation of selected waste materials, there are still several factors that hamper the development of co-composting platforms, mainly insufficient knowledge of some chemical and microbiological processes, but also some legislative aspects. This chapter illustrates the progress achieved in co-composting technology worldwide, some key legislative aspects related to the co-composting process, the main scientific and technical aspects that deserve research attention to further develop co-composting technology, and successful applications of co-composting for the reclamation of soils and sediments, allowing their use for cultivation or as growing media in plant nurseries. A specific case study of the production of fertile plant-growing media from sediment co-composting with green waste is also illustrated
    • 

    corecore