21 research outputs found

    Load Management System with Integration of Renewable Energy Resources

    Get PDF
    This article presents, a load management system is designed and implemented to integrate renewable energy resources (RES) (solar and wind), which manage the load according to the supply/demand and the user's priorities. The system is implemented on a hybrid system integrating wind energy, solar energy, utility supply, and battery energy storage system. Load management is carried out via switching of the loads. The sources can also be turned ON and OFF. During excess power, the battery module works as an energy storage unit or backup energy supply unit during demand. Loads can be turned ON and OFF wirelessly via GSM. The grid operator can switch the loads by simply sending a command via a short service message (SMS). In the end, the system is tested, and the results are presented.   The hybrid system is simulated in MATLAB/Simulink first and then hardware implementation is carried out, which involves integrating renewable resources via converters and load management by switching using a microcontroller (Arduino)

    The symphony of team flow in virtual teams : using artificial intelligence for its recognition and promotion

    Get PDF
    More and more teams are collaborating virtually across the globe, and the COVID-19 pandemic has further encouraged the dissemination of virtual teamwork. However, there are challenges for virtual teams – such as reduced informal communication – with implications for team effectiveness. Team flow is a concept with high potential for promoting team effectiveness, however its measurement and promotion are challenging. Traditional team flow measurements rely on self-report questionnaires that require interrupting the team process. Approaches in artificial intelligence, i.e., machine learning, offer methods to identify an algorithm based on behavioral and sensor data that is able to identify team flow and its dynamics over time without interrupting the process. Thus, in this article we present an approach to identify team flow in virtual teams, using machine learning methods. First of all, based on a literature review, we provide a model of team flow characteristics, composed of characteristics that are shared with individual flow and characteristics that are unique for team flow. It is argued that those characteristics that are unique for team flow are represented by the concept of collective communication. Based on that, we present physiological and behavioral correlates of team flow which are suitable – but not limited to – being assessed in virtual teams and which can be used as input data for a machine learning system to assess team flow in real time. Finally, we suggest interventions to support team flow that can be implemented in real time, in virtual environments and controlled by artificial intelligence. This article thus contributes to finding indicators and dynamics of team flow in virtual teams, to stimulate future research and to promote team effectiveness

    AI Approaches towards Prechtl’s Assessment of General Movements: A Systematic Literature Review

    No full text
    General movements (GMs) are spontaneous movements of infants up to five months post-term involving the whole body varying in sequence, speed, and amplitude. The assessment of GMs has shown its importance for identifying infants at risk for neuromotor deficits, especially for the detection of cerebral palsy. As the assessment is based on videos of the infant that are rated by trained professionals, the method is time-consuming and expensive. Therefore, approaches based on Artificial Intelligence have gained significantly increased attention in the last years. In this article, we systematically analyze and discuss the main design features of all existing technological approaches seeking to transfer the Prechtl’s assessment of general movements from an individual visual perception to computer-based analysis. After identifying their shared shortcomings, we explain the methodological reasons for their limited practical performance and classification rates. As a conclusion of our literature study, we conceptually propose a methodological solution to the defined problem based on the groundbreaking innovation in the area of Deep Learning

    Cognitively Inspired Feature Extraction and Speech Recognition for Automated Hearing Loss Testing

    Get PDF
    Hearing loss, a partial or total inability to hear, is one of the most commonly reported disabilities. A hearing test can be carried out by an audiologist to assess a patient’s auditory system. However, the procedure requires an appointment, which can result in delays and practitioner fees. In addition, there are often challenges associated with the unavailability of equipment and qualified practitioners, particularly in remote areas. This paper presents a novel idea that automatically identifies any hearing impairment based on a cognitively inspired feature extraction and speech recognition approach. The proposed system uses an adaptive filter bank with weighted Mel-frequency cepstral coefficients for feature extraction. The adaptive filter bank implementation is inspired by the principle of spectrum sensing in cognitive radio that is aware of its environment and adapts to statistical variations in the input stimuli by learning from the environment. Comparative performance evaluation demonstrates the potential of our automated hearing test method to achieve comparable results to the clinical ground truth, established by the expert audiologist’s tests. The overall absolute error of the proposed model when compared with the expert audiologist test is less than 4.9 dB and 4.4 dB for the pure tone and speech audiometry tests, respectively. The overall accuracy achieved is 96.67% with a hidden Markov model (HMM). The proposed method potentially offers a second opinion to audiologists, and serves as a cost-effective pre-screening test to predict hearing loss at an early stage. In future work, authors intend to explore the application of advanced deep learning and optimization approaches to further enhance the performance of the automated testing prototype considering imperfect datasets with real-world background noise

    Rank Pooling Approach for Wearable Sensor-Based ADLs Recognition

    No full text
    This paper addresses wearable-based recognition of Activities of Daily Living (ADLs) which are composed of several repetitive and concurrent short movements having temporal dependencies. It is improbable to directly use sensor data to recognize these long-term composite activities because two examples (data sequences) of the same ADL result in largely diverse sensory data. However, they may be similar in terms of more semantic and meaningful short-term atomic actions. Therefore, we propose a two-level hierarchical model for recognition of ADLs. Firstly, atomic activities are detected and their probabilistic scores are generated at the lower level. Secondly, we deal with the temporal transitions of atomic activities using a temporal pooling method, rank pooling. This enables us to encode the ordering of probabilistic scores for atomic activities at the higher level of our model. Rank pooling leads to a 5–13% improvement in results as compared to the other popularly used techniques. We also produce a large dataset of 61 atomic and 7 composite activities for our experiments

    Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors

    No full text
    Getting a good feature representation of data is paramount for Human Activity Recognition (HAR) using wearable sensors. An increasing number of feature learning approaches—in particular deep-learning based—have been proposed to extract an effective feature representation by analyzing large amounts of data. However, getting an objective interpretation of their performances faces two problems: the lack of a baseline evaluation setup, which makes a strict comparison between them impossible, and the insufficiency of implementation details, which can hinder their use. In this paper, we attempt to address both issues: we firstly propose an evaluation framework allowing a rigorous comparison of features extracted by different methods, and use it to carry out extensive experiments with state-of-the-art feature learning approaches. We then provide all the codes and implementation details to make both the reproduction of the results reported in this paper and the re-use of our framework easier for other researchers. Our studies carried out on the OPPORTUNITY and UniMiB-SHAR datasets highlight the effectiveness of hybrid deep-learning architectures involving convolutional and Long-Short-Term-Memory (LSTM) to obtain features characterising both short- and long-term time dependencies in the data

    Deep Transfer Learning for Time Series Data Based on Sensor Modality Classification

    No full text
    The scarcity of labelled time-series data can hinder a proper training of deep learning models. This is especially relevant for the growing field of ubiquitous computing, where data coming from wearable devices have to be analysed using pattern recognition techniques to provide meaningful applications. To address this problem, we propose a transfer learning method based on attributing sensor modality labels to a large amount of time-series data collected from various application fields. Using these data, our method firstly trains a Deep Neural Network (DNN) that can learn general characteristics of time-series data, then transfers it to another DNN designed to solve a specific target problem. In addition, we propose a general architecture that can adapt the transferred DNN regardless of the sensors used in the target field making our approach in particular suitable for multichannel data. We test our method for two ubiquitous computing problems—Human Activity Recognition (HAR) and Emotion Recognition (ER)—and compare it a baseline training the DNN without using transfer learning. For HAR, we also introduce a new dataset, Cognitive Village-MSBand (CogAge), which contains data for 61 atomic activities acquired from three wearable devices (smartphone, smartwatch, and smartglasses). Our results show that our transfer learning approach outperforms the baseline for both HAR and ER

    Sleep Stage Classification in Children Using Self-Attention and Gaussian Noise Data Augmentation

    No full text
    The analysis of sleep stages for children plays an important role in early diagnosis and treatment. This paper introduces our sleep stage classification method addressing the following two challenges: the first is the data imbalance problem, i.e., the highly skewed class distribution with underrepresented minority classes. For this, a Gaussian Noise Data Augmentation (GNDA) algorithm was applied to polysomnography recordings to seek the balance of data sizes for different sleep stages. The second challenge is the difficulty in identifying a minority class of sleep stages, given their short sleep duration and similarities to other stages in terms of EEG characteristics. To overcome this, we developed a DeConvolution- and Self-Attention-based Model (DCSAM) which can inverse the feature map of a hidden layer to the input space to extract local features and extract the correlations between all possible pairs of features to distinguish sleep stages. The results on our dataset show that DCSAM based on GNDA obtains an accuracy of 90.26% and a macro F1-score of 86.51% which are higher than those of our previous method. We also tested DCSAM on a well-known public dataset—Sleep-EDFX—to prove whether it is applicable to sleep data from adults. It achieves a comparable performance to state-of-the-art methods, especially accuracies of 91.77%, 92.54%, 94.73%, and 95.30% for six-stage, five-stage, four-stage, and three-stage classification, respectively. These results imply that our DCSAM based on GNDA has a great potential to offer performance improvements in various medical domains by considering the data imbalance problems and correlations among features in time series data

    Azadirachta indica leaves extract assisted green synthesis of Ag-TiO2 for degradation of Methylene blue and Rhodamine B dyes in aqueous medium

    No full text
    Aqueous pollution due to textile industry is an important issue. Photocatalysis is one of the methods used for eradication of dyes from textile industrial effluents. In this study, the synthesis, characterization and evaluation of photo catalytic activity of Ag-TiO2 is reported. TiO2 catalysts with 2, 4, 6 and 8% loading of Ag were prepared by green methods using Azadirachta indica leaves extract as reducing agent with titanium dioxide and silver nitrate as precursor materials. Prepared catalyst was characterized by advanced techniques and was used as catalyst for degradation of Methylene blue and Rhodamine B dyes. Deposition of Ag greatly enhanced the catalytic efficiency of TiO2 towards degradation of dyes. Irradiation of catalyst excites electrons from conduction band of catalyst to valence band yielding an electron-hole pair. This electron-hole pair undergoes secondary reactions and produce OH∙ radicals. These active radicals take part in degradation of dyes. More than 90% dyes were degraded in 120 min. Photo catalytic degradation of Methylene blue and Rhodamine B followed Eley-Rideal mechanism which states that dye react in fluid phase with adsorbed oxygen
    corecore