2,873 research outputs found

    Uniform symplicity of groups with proximal action

    Full text link
    We prove that groups acting boundedly and order-primitively on linear orders or acting extremly proximality on a Cantor set (the class including various Higman-Thomson groups and Neretin groups of almost automorphisms of regular trees, also called groups of spheromorphisms) are uniformly simple. Explicit bounds are provided.Comment: 23 pages, appendix by Nir Lazarovich, corrected versio

    Chiral emission into nanophotonic resonators

    Full text link
    Chiral emission, where the handedness of a transition dipole determines the direction in which a photon is emitted, has recently been observed from atoms and quantum dots coupled to nanophotonic waveguides. Here, we consider the case of chiral light-matter interactions in resonant nanophotonic structures, deriving closed-form expressions for the fundamental quantum electrodynamic quantities that describe these interactions. We show how parameters such as the position dependent, directional Purcell factors and mode volume can be calculated using computationally efficient two dimensional eigenmode simulations. As an example, we calculate these quantities for a prototypical ring resonator with a geometric footprint of only 4.5~μ\mum2^2, showing that perfect directionality with a simultaneous Purcell enhancement upwards of 400 are possible. The ability to determine these fundamental properties of nanophotonic chiral interfaces is crucial if they are to form elements of quantum circuits and networks

    Asymptotic Task-Based Quantization with Application to Massive MIMO

    Get PDF
    Quantizers take part in nearly every digital signal processing system which operates on physical signals. They are commonly designed to accurately represent the underlying signal, regardless of the specific task to be performed on the quantized data. In systems working with high-dimensional signals, such as massive multiple-input multiple-output (MIMO) systems, it is beneficial to utilize low-resolution quantizers, due to cost, power, and memory constraints. In this work we study quantization of high-dimensional inputs, aiming at improving performance under resolution constraints by accounting for the system task in the quantizers design. We focus on the task of recovering a desired signal statistically related to the high-dimensional input, and analyze two quantization approaches: We first consider vector quantization, which is typically computationally infeasible, and characterize the optimal performance achievable with this approach. Next, we focus on practical systems which utilize hardware-limited scalar uniform analog-to-digital converters (ADCs), and design a task-based quantizer under this model. The resulting system accounts for the task by linearly combining the observed signal into a lower dimension prior to quantization. We then apply our proposed technique to channel estimation in massive MIMO networks. Our results demonstrate that a system utilizing low-resolution scalar ADCs can approach the optimal channel estimation performance by properly accounting for the task in the system design

    Sequestering CP Violation and GIM-Violation with Warped Extra Dimensions

    Get PDF
    We propose a model of spontaneous CP violation to address the strong CP problem in warped extra dimensions that relies on sequestering flavor and CP violation. We assume that brane-localized Higgs Yukawa interactions respect a U(3) flavor symmetry that is broken only by bulk fermion mass and Yukawa terms. All CP violation arises from the vev of a CP-odd scalar field localized in the bulk. To suppress radiative corrections to theta-bar, the doublet quarks in this model are localized on the IR brane. We calculate constraints from flavor-changing neutral currents (FCNCs), precision electroweak measurements, CKM unitarity, and the electric dipole moments in this model and predict theta-bar to be at least about 10^-12.Comment: 38 page

    Reduction of voluntary dehydration during effort in hot environments

    Get PDF
    During an experimental marching trip the daily positive fluid balance was preserved by providing a wide choice of beverages during the hours of the day. It was found that the beverage most suitable for drinking in large quantities during periods of effort was a cold drink with sweetened (citrus) fruit taste. Carbonated drinks, including beer, but milk also, were found unsuitable for this purpose

    Instability of Supersonic Cold Streams Feeding Galaxies II. Nonlinear Evolution of Surface and Body Modes of Kelvin-Helmholtz Instability

    Get PDF
    As part of our long-term campaign to understand how cold streams feed massive galaxies at high redshift, we study the Kelvin-Helmholtz instability (KHI) of a supersonic, cold, dense gas stream as it penetrates through a hot, dilute circumgalactic medium (CGM). A linear analysis (Paper I) showed that, for realistic conditions, KHI may produce nonlinear perturbations to the stream during infall. Therefore, we proceed here to study the nonlinear stage of KHI, still limited to a two-dimensional slab with no radiative cooling or gravity. Using analytic models and numerical simulations, we examine stream breakup, deceleration and heating via surface modes and body modes. The relevant parameters are the density contrast between stream and CGM (δ\delta), the Mach number of the stream velocity with respect to the CGM (MbM_{\rm b}) and the stream radius relative to the halo virial radius (Rs/RvR_{\rm s}/R_{\rm v}). We find that sufficiently thin streams disintegrate prior to reaching the central galaxy. The condition for breakup ranges from Rs<0.03RvR_{\rm s} < 0.03 R_{\rm v} for (Mb∼0.75,δ∼10)(M_{\rm b} \sim 0.75, \delta \sim 10) to Rs<0.003RvR_{\rm s} < 0.003 R_{\rm v} for (Mb∼2.25,δ∼100)(M_{\rm b} \sim 2.25, \delta \sim 100). However, due to the large stream inertia, KHI has only a small effect on the stream inflow rate and a small contribution to heating and subsequent Lyman-α\alpha cooling emission.Comment: The main astrophysical results are Figure 22 and Figure 23. Final 7 pages are appendices. Accepted to MNRA

    A population ecology perspective on the functioning and future of health information organizations

    Get PDF
    Background: Increasingly, health care providers need to exchange information to meet policy expectations and business needs. A variety of health information organizations (HIOs) provide services to facilitate health information exchange (HIE). However, the future of these organizations is unclear. Purpose: The aim of this study was to explore the environmental context, potential futures, and survivability of community HIOs, enterprise HIEs, and electronic health record vendor-mediated exchange using the population ecology theory. Approach: Qualitative interviews with 33 key informants representing each type of HIE organization were analyzed using template analysis. Results: Community HIOs, enterprise HIEs, and electronic health record vendors exhibited a high degree of competition for resources, especially in the area of exchange infrastructure services. Competition resulted in closures in some areas. In response to environmental pressures, each organizational type was endeavoring to differentiate its services and unique use case, as well as pursing symbiotic relationships or attempting resource partitioning. Conclusion: HIOs compete for similar resources and are reacting to environmental pressures to better position themselves for continued survival and success. Our ecological research perspective helps move the discourse away from situation of a single exchange organization type toward a view of the broader dynamics and relationships of all organizations involved in facilitating HIE activities
    • …
    corecore