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Abstract

We propose a model of spontaneous CP violation to address the strong CP problem in
warped extra dimensions that relies on sequestering flavor and CP violation. We assume
that brane-localized Higgs Yukawa interactions respect a U(3) flavor symmetry that is
broken only by bulk fermion mass and Yukawa terms. All CP violation arises from the
vev of a CP-odd scalar field localized in the bulk. To suppress radiative corrections to θ̄,
the doublet quarks in this model are localized on the IR brane. We calculate constraints
from flavor-changing neutral currents (FCNCs), precision electroweak measurements,
CKM unitarity, and the electric dipole moments in this model and predict θ̄ to be at
least about 10−12.

http://arXiv.org/abs/0711.4421v1


1 Introduction

CP violation in the kaon system was first observed more than 40 years ago [1], and yet no
evidence of CP violation in the strong interactions has since been observed. Whereas the
weak phase is of order unity, the strong CP angle θ̄ is constrained to be . 10−10.

The quarks get their masses in the Standard Model from two Yukawa matrices Yu, Yd for
the up-type quarks and down-type quarks, respectively, which induce a unitary CKM matrix
when rotated into the mass eigenbasis:

λu → LuλuR
†
u = µu/v

λd → LdλdR
†
d = µd/v

VCKM = LuL
†
d (1)

VCKM contains a single phase that cannot be removed by vector-like rotations of the quarks.
This phase accounts for all observed CP violation in the Standard Model. The rotation in
equation 1 is generically chiral and thus shifts θQCD, but in such a way that the physically
observable θ̄ remains invariant

θ̄ = θQCD − arg detλuλd (2)

The renormalizable operator θQCDGG̃ could in principle violate CP independently of the weak
interactions. Without some mechanism for preventing strong CP violation, the cancellation
between θQCD and argdetλuλd appears extremely fine-tuned.

An additional difficulty with constraints on CP violation occurs in models where the
flavor structure of the Standard Model is explained by UV physics. Since flavor and CP
in the Standard Model have the same origin (the Yukawa matrices), any solution to the
flavor problem is likely to also introduce new sources of CP violation (CPV). Integrating
out heavy fields generically induces dimension-5 operators that contribute to the neutron
electric dipole moment (EDM), independently of θ̄. Axion models, which address only θ̄
have nothing to say about these additional contributions. Of course the order of magnitude
involved is far less severe, but nonetheless these additional contributions to EDMs generally
require additional model-building constraints.

The approach we take addresses these issues and falls in the class of solutions referred
to as spontaneous CP violation. The idea is that CP is a valid symmetry in the UV, but is
broken spontaneously in such a way that phases enter VCKM but not arg detλuλd.

In this paper we consider a theory of spontaneous CPV embedded in RS. We utilize in a
warped scenario the extra dimensional mechanism of [12], which “sequesters” the source of
CPV from operators that could directly transmit it to θ̄. Thus, we are able to address the
strong CP problem even with new KK modes near the electroweak scale, though electroweak
constraints push the KK masses to be & 15− 18 TeV. This is low from the point of view of
models addressing the strong CP problem, though unfortunately it is fairly high in terms of
addressing the gauge hierarchy problem. However we show that embedding a solution to the
strong CP problem based on spontaneous CPV inside RS allows us to explain mass scales and
further suppress some potentially dangerous CP and flavor violating contributions, thereby
allowing us to address both the gauge hierarchy and fermion mass hierarchy problems.

Furthermore, sequestering CPV relaxes constraints on the KK scale of RS from neutron
electric dipole moment (EDM) measurements. We will show that if CPV is sourced in the
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bulk and transmitted through the fermion wavefunctions, then the flavor violation and CP
violation very efficiently “washes out” of the excited modes but not the zero modes. This is
to be contrasted with “anarchic” models of flavor in RS, where the CPV comes from Higgs
Yukawas with O(1) entries and phases, and thus is equally present at every KK level. We
show that our model suppresses EDM operators radiatively generated from integrating out
KK modes.

As we will explain in more detail throughout the paper, the suppression of flavor and
CP violation in our model exploits four ingredients that are natural in the context of extra
dimensions:

1. AdS spacetime isometries in the bulk. The SO(4, 2) symmetry of AdS greatly re-
stricts the possible couplings of bulk fermions a bulk scalar field Φ, analogous to the
restrictions imposed by 5D Lorentz symmetry in flat-space [12]. We assume CP is
spontaneously broken when Φ gets a vev. This generates a hermitian bulk mass ma-
trixM for the fermions as with the mechanism of [12]. The zero mode wavefunctions
F (0)(φ) at a position φ in the bulk then take the form

F (0) ∝ P exp

(∫ φ

M(φ′)dφ′
)

, (3)

where P denotes path ordering with respect to φ. This has real determinant since M
is Hermitian. Taking λu,d to be the brane Yukawas, which are real-valued by CP, one

finds that Yu,d = F
(0)
q λu,dF

(0)
u,d . Both have real determinant, and θ̄ vanishes at tree-level.

2. Sequestering of the CP violating scalar field from the boundaries and the local Yukawa

interactions. Ingredient (1) enforces that CP violation in the bulk that is transmitted
through the fermion wavefunctions will not induce θ̄ at tree level. However, if the source
of CPV has non-negligible overlap with the TeV brane, then it can enter the Yukawas
through the direct coupling Φij(Q̄L)iH(UR)j, which contributes order one strong CP
phases once Φ gets a vev. θ̄ would not be protected from these contributions, and
thus it is crucial that the source of CPV be geographically sequestered from the Higgs
Yukawas. Furthermore, the AdS isometries are explicitly broken at the boundaries of
RS, and the coupling of Φ to the fermions is not protected there. We therefore assume
that 〈Φ〉 is localized somewhere in the bulk, away from the boundary branes. We will
see that the farther we localize Φ in the UV, the less its effect will be on the KK
fermion wavefunctions, so CP violation is even more effectively sequestered than one
might naively assume.

For simplicity, we sequester Φ by localizing it to a third brane in the warped bulk. It
is possible to imagine other equally viable profiles for Φ. It will be important that the
effect of Φ washes out much more efficiently of the IR-localized KK mode wavefunctions
than in those of the UV-localized zero modes so that there is a limit where the KK
mode wavefunctions are diagonal in flavor indices (up to negligible corrections) and all
CP violation enters the KK-reduced theory only through the zero mode wavefunctions.

3. A large flavor symmetry. At tree-level, the only aspect of the flavor symmetry that is
necessary for θ̄ suppression is that all the up-type quarks get their masses at the same
place in the bulk, and similarly for the down-type quarks. This is generically a feature
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of RSI models, where the Higgs vev must be localized near the TeV brane in order to
solve the hierarchy problem. To address loop corrections, we assume that the flavor
group U(3)Q × U(3)U × U(3)D breaks to a diagonal U(3) through the Higgs Yukawas,
and further down to the U(1)3 subgroup by constant bulk fermion masses, and finally
broken completely by a CPV source in the bulk.

We further assume that the bulk masses for the up-type singlets and down-type singlets
approximately commute, so that they are diagonal in approximately the same basis1.
In this case, the bulk masses leave invariant an approximate U(1)3 for each generation.
It is not necessary to make any further assumption about the bulk mass matrices
aligning with the brane Yukawas.

4. Doublets confined to the IR brane. The doublets are confined to the IR brane. Con-
sequently, the only states charged under SU(2)L are zero modes. This implies that
all fermion interactions with charged currents are controlled by a single CKM matrix
VCKM that is a generalization of the Standard Model version. In the Standard Model,
the CKM matrix is unitary since all of the left-handed fields couple to the W bosons
with equal strength. However, in 5d models, there are left-handed fields, namely the
left-handed KK excitations of the electroweak singlets, which do not couple to W
bosons. Consequently, VCKM is of the form

VCKM = LuP0L
†
d (4)

where P0 is a projection onto the left-handed zero modes and Lu,d are diagonalization
matrices that mix zero and KK modes.

With the doublets to be confined to the IR brane, all CP and flavor violation appears
through the singlet wavefunctions. In particular, the singlet zero mode wavefunctions
are responsible for generating small Standard Model CKM angles. When the CPV
source is located sufficiently far in the UV, the CKM angles appear generically as
fractional powers of ratios of fermion masses, and thus are generated naturally.

We will see that a consequence of these assumptions is that up to O(v/MKK)2, we have
an approximate GIM mechanism. Our basic outline for this paper is as follows. In section
2, we review flavor in warped extra-dimensional models and describe some differences in our
model. We present our model and some of its features in section 3. In sections 4 we discuss
the KK reduced theory and its interactions. In section 5, we calculate the CP and flavor
constraints, and in section 6 we conclude.

2 Flavor Physics in Higher-Dimensional Models

Because the spontaneous breaking of CP is intimately connected with the breaking of flavor
symmetries in our model, we give a brief aside about flavor physics in higher-dimensional
models and RS in particular. The models we compare all have an extra dimension bounded
by branes. The original RS model had the entirety of the SM localized on the IR brane.

1This could be achieved for instance by coupling together the fields responsible for generating their bulk
masses so that their potential is minimized when they align.
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Confinement of the SM fields to the IR brane was assumed to happen through some unspec-
ified dynamics whose effects on flavor-changing, etc., were impossible to calculate. Putting
the SM gauge fields in the bulk (first considered in [8, 9]) allowed the possibility for gauge
coupling unification [16–20], but it had calculable corrections to precision electroweak ob-
servables that raised the scale of KK gauge bosons to 23 TeV. Putting all the fermions in the
bulk drastically weakened such constraints, and further allowed for the warping of fermion
wavefunctions to explain the hierarchy in their masses [10,11,22,25] while the brane Yukawas
and masses were order O(1) and anarchic. In these “anarchic” models, the small zero mode
masses and CKM angles arise from the hierarchy in fermion wavefunctions on the TeV brane,
as follows. The Yukawa matrices in the KK reduced theory are Yu,d = F

(0)
Q λu,dF

(0)
u,d , where

λu,d are the 5d brane Yukawa matrices with O(1) values and phases in every entry and F
(0)
Q,u,d

are matrices of the zero mode wavefunctions at the IR brane. The zero mode masses then
are dynamically generated as

mu,d ≈ vF
(0)
Q F

(0)
u,d = v

√

1 + 2νQ
1− e−(1+2νQ)kπrc

√

1 + 2νu,d
1− e−(1+2νu,d)kπrc

(5)

where νQ,u,d are the bulk masses in units of the AdS curvature scale k, and we have used the

zero mode wavefunctions F (0) =
√

(1 + 2ν)/(1− e−(1+2ν)kπrc). Therefore, a modest spread
in the values of ν for the different fermions gives rise to an exponential hierarchy in the
masses. Furthermore, the CKM angles are controlled by the bulk masses for the doublets, as
follows. The CKM matrix diagonalizes Yu,dY

†
u,d = F

(0)
Q λu,dF

(0)2
u,d λ

†
u,dF

(0)
Q , and thus the CKM

angles are approximately

θij ≈
FQi
FQj

(6)

Constraints on the T parameter from bulk SU(2) gauge boson contributions were further
reduced in models in which global custodial SU(2) was extended to a gauge symmetry in
the bulk. Potential problems with RS models of flavor are the Z to bb̄ coupling, which is
modified because bL cannot be localized too far away from the IR brane, where KK modes
of bulk gauge fields are concentrated, as well as large ǫK and the electric dipole moment of
the neutron. These latter constraints are particularly bad because of the parity symmetry in
the bulk, which means that both left and right-handed fields couple to the W gauge boson
KK modes. These constraints are quite severe [34, 35].

As in any model of flavor, one can also try to address the strong CP problem in these
models. The first proposal to use twisting to solve the strong CP problem was made in [12],
in a flat extra dimension. There, CP violation occurred because up and down type quarks
were located at opposite ends of the fifth dimension so that CPV couldn’t be eliminated
from both simultaneously. However, RS requires that all Yukawas be on the IR brane, so
it is necessary to generate different phases for the up and down type right handed fields,
which can be done by placing them both in the bulk rather than on branes. Because of
the strong EDM constraint, we do not allow left handed Standard Model fermions in the
bulk but instead sequester them on the IR brane. The reason is that bulk doublets have a
vector-like tower of KK modes, so that there exist right-handed fields charged under SU(2)L.
Then, there is not only a CKM matrix for the left-handed fields, but an additional CKM
matrix for the right-handed fields as well, and θ̄ would be renormalized at one-loop by the
diagram in figure 1. We thus consider brane-localized doublet fermions only.
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Figure 1: A one-loop contribution to θ̄ in the case where both the doublets and the singlets
are in the bulk. We therefore take the doublets to be localized on the brane.

However, as mentioned, models with light fermions localized on the TeV brane face
very restrictive constraints from precision electroweak measurements, since the KK gluon
wavefunctions are enhanced by a volume factor in the IR. Our strongest constraints will be
from these measurements, which puts the scale of KK gauge bosons in our model at about
15-18 TeV. Similar though weaker constraints come from flavor and unitarity of the observed
CKM matrix for the zero mode quarks.

It is nonetheless worth noting the interesting flavor physics of this model with bulk right
handed fermions but IR-localized left-handed fermions. We will assume a U(1)3 symmetry
is preserved by the bulk masses which is broken only by a localized CPV field in the bulk
coupling to the bulk singlets through Yukawa couplings. Unlike in “anarchic” models, the
brane Yukawa matrices in our model are flavor universal and thus the CKM matrix arises
fairly naturally from the different values of the right-handed fermion wave functions, even
though their bulk masses are similar and the vev of the CPV field is quite generic. More
precisely, we will show that in our setup the Yukawas are given by

Yu,d ≈ F
(0)
u,d =

(
1 + 2νu,d

1− e(1+2νu,d)kπrc

)1−φ0
π

ekrcgu,dΦ

(
1 + 2νu,d

1− e(1+2νu,d)kπrc

)φ0
π

(7)

where φ0 is the location of the CPV source Φ, with the usual convention that φ = 0 (π) is
the UV (IR) brane, and gu,d is the coupling strength of Φ to the bulk fermions. For O(1)
values of krcgu,dΦ, this form of the Yukawas generates CKM angles that come dominantly
from the down-type Yukawa and are approximately

θij ≈
(
mdi

mdj

)1−φ0
π

, (8)

which works rather well for reproducing the observed values.
Another nice feature of RS flavor models in general is that the KK mode mass matrix is

close to the identity. This helps with CP violating and flavor violating effects. Independently
of CP, the flavor model might be worth pursuing, particularly if the stringent Z boson
coupling constraints can be alleviated.

Finally, we compare the role of twisting in the model of [12] and our model. Twisting
plays an essential role in the first model since both the up and down mass matrices can
be diagonalized by different transformations at different points and it is only because of the
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different phase rotations required at the different points in the bulk that CP violation occurs.
The use of twisting is a little more subtle in our case, where it generates a hierarchy in the
CKM angles and furthermore sequesters C violation from the IR brane Yukawa couplings
which is essential to suppressing strong CP violation.

3 The Model

3.1 Definition of the Model

RS is defined on a non-factorizable warped geometry with metric

ds2 = e−2kr|φ|ηµνdx
µdxν + r2dφ2, (9)

where the extra dimension is an S1/Z2 orbifold of size r labeled by a coordinate φ ∈
[−π, π],such that the points (xµ, φ) and (xµ,−φ) are identified. At orbifold fixed points
at φ = 0 and φ = π lie the UV and IR brane, respectively. Note that this orbifold boundary
condition forces either the left or right-handed zero mode of every bulk fermion wavefunction
to vanish.

The singlet SM fermions, (U ′
L, UR)i and (D′

L, DR)i, come in Dirac multiplets that live in
the bulk, while the doublets (QL)i, are localized on the brane. Here i is a flavor index and
′ labels the fermion component whose zero mode is projected out by the orbifold boundary
condition. Thus, zero modes exist only for QL, UR, and DR, and not the primed fields. The
Higgs, H , is localized on the IR brane. Finally, we include a CP odd bulk scalar, Φij , that
is localized at a position φ0 in the bulk and charged under flavor and acquires a complex
vev that is the source of all CP phases in the theory. The action for our theory (neglecting
kinetic terms) is

S = Sbulk + Sbrane, (10)

Sbulk =

∫

d5x
√
G
{
−Ū ′

L(Mu + guΦδ(φ− φ0))UR (11)

−D̄′
L(Md + gdΦδ(φ− φ0))DR + h.c.

}
, (12)

Sbrane =

∫

d4x
√−g

{

Q̄LH̃λuUR + Q̄LHλdDR + h.c.
}

, (13)

where gu,d, λu,d are numbers and Mu,d are matrices. Note that we have assumed that CP is
a valid symmetry in the UV, so all of the couplings in this action are manifestly real.

The mechanism for eliminating θ̄ at tree-level relies crucially on the spacetime symmetry,
SO(4, 2), which constrains the only renormalizable interaction between the CPV source Φ
and a bulk fermion Ψ to be of the form Φij(Ψ̄LiΨRj + Ψ̄RiΨLj), so only the hermitian piece
of Φ couples to the fermions in the action. If Φ is furthermore CP odd, as we impose, then
its couplings are further restricted:

L ⊃ g(Φ[ij] + Φ†
[ij])(Ψ̄LiΨRj + Ψ̄RiΨLj)δ(φ− φ0) (14)

After Φ acquires a vev, this will introduce phases and twisting in the fermion wavefunctions.
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3.2 Zero Mode Wavefunctions

In this section we show that zero modes wavefunctions generically have real determinant
in extra dimensional theories and establish our notation for the fermion wavefunctions that
we will use in the remainder of the paper. For now, let us consider just a single massive
bulk fermion flavor multiplet Ψi coupled to a CP-odd bulk scalar Φ; of course, our results
will hold for the SM fermions, where ΨR = UR, DR for the up-like and down-like singlets,
respectively. The action is

S =

∫

d5x
√
G

{
1

2
iΨ̄iΓ

A(∂A −
←−
∂ A)Ψi − Ψ̄i(Mij + gΦijδ(φ− φ0))Ψj

}

. (15)

After imposing orbifold boundary conditions on the bulk fermions, the KK reduction will
contain a vector-like spectrum of KK excitations for all but a single chiral zero mode. As
before, all the couplings in the above action are real because CP is preserved in the UV. We
assume that Φ has some CP respecting potential, V (Φ), which is therefore even in Φ, that
induces spontaneous symmetry breaking, giving Φ a complex vev that sources CP violation
in our theory.

We perform a standard KK reduction of the bulk fermions as follows:

ΨL,R(x, φ)i =
e2kr|φ|√

r

∑

α

FL,R(φ)iα × ψL,R(x)α. (16)

The explicit factor of e2kr|φ| is conventional, and simplifies the expressions for the normal-
ization conditions of the wavefunctions. Let us consider the KK reduction of Ψ. All of the x
dependence lies in the (vector of) dynamical 4D fields ψ, while the φ dependence is included
in the (matrix of) wavefunctions F . Notice that this matrix has a flavor index i which runs
from 1 to 3 as well as a KK mode index α, which runs from 1 to N , where N labels the
KK mode at which the model becomes gravitationally strongly coupled. In general, it is
very natural to group these KK modes in groups of threes because of the approximate flavor
symmetry. For example there will always be three exactly massless zero modes (before elec-
troweak symmetry breaking), which in the case of Ψ = UR correspond to the right-handed
up, charm, and top. Thus, we can parse the mass matrix into a separate 3 by 3 matrix for
each KK level:

Fiα =







zero modes
︷ ︸︸ ︷

{Fi1, Fi2, Fi3},
1st excited modes
︷ ︸︸ ︷

{Fi4, Fi5, Fi6}, . . .






(17)

=
{

F
(0)
iα , F

(1)
iα , . . .

}

. (18)

Using this notation, it is straightforward to refer to a particular KK mode of a particular
generation: for example F

(1)
i3 denotes the 3-vector wavefunction corresponding to the first

KK excitation of a third generation fermion. 2 Also, note that in a theory in which all the

2 There is some freedom here to choose what we mean by “third generation” of the excited modes, since
the mass matrix remains diagonal under permutations of any two fermion modes. One sensible choice would
be to rank the “generations” by increasing mass within each KK level. Another reasonable definition would
be to demand that as Φ is decreased continuously to zero, the F matrices transform continuously to diagonal
matrices. We choose the latter of these, though clearly none of our results depend on this choice.
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flavors are decoupled from each other, F (n) is simply a diagonal matrix. In a theory in which
the flavors are degenerate, F (n) is proportional to the identity matrix.

For each KK fermion (ψL,R)α, its wavefunction (FL,R)iα obeys the first order wave equa-
tion

(

±1

r
∂φ − (M + g〈Φ〉δ(φ− φ0))

)

ij

(FL,R)jα = −ekr|φ|mα(FR,L)iα (19)

where mα is the KK mass. Going to a more convenient variable [11], t = ǫekr|φ| ∈ [ǫ, 1],
where ǫ = e−krπ = 10−16, rescaling FL,R(φ)→

√
krǫFL,R(t), and defining

µij =
1

k
(M + gkrt〈Φ〉δ(t− t0))ij , (20)

xα =
mα

ǫk
. (21)

Now because of the orbifold boundary condition, we are forced to set either the zero mode
for ΨL or ΨR to vanish at the orbifold fixed points t = ǫ, 1. Assuming we choose to eliminate
the right-handed zero mode, the left-handed zero mode then satisfies the wave equation and
orthonormality condition

(

∂t −
µ

t

)

F
(0)
L = 0 (22)

∫ 1

ǫ

dtF
(0)†
L F

(0)
L =

∫ 1

ǫ

dtF
(0)†
R F

(0)
R = 1, (23)

where we have suppressed flavor indices. Equation 22 can be formally integrated to obtain

F
(0)
L ∝ P exp

(∫ t

ǫ

µ(t′)

t′
dt′
)

, (24)

where P denotes path ordering with respect to t. The proportionality constant in 24 is a
constant hermitian matrix. We have chosen the lower bound on the integral in 24 to be ǫ
so that the normalization matrix is close to the identity for UV localized zero modes, and
thus does not have a qualitative effect on any of our discussions. We do of course include it
in all of our numeric computations. Because µ is Hermitian, we see that F

(0)
L is a product

of infinitesimal Hermitian matrices, so it has real determinant. Thus, extra dimensions
generically yield zero mode matrix wavefunctions which have real determinant.

3.3 Approximate Dependence of CKM angles on t0

Consider now the structure of the observed Yukawa matrices if we assume that Φ has suffi-
ciently large entries to completely scramble the entries of any matrix that it multiplies. Let
us split the path-ordered integral in equation 24 into three pieces:

F (0)(1) = F (1; t0)× exp (krgΦ)× F (t0; ǫ)

F (1; t0) ≡
[

P exp

(∫ 1

t0

µ

t′
dt′
)]

= t−ν0

F (t0; ǫ) ≡
[

P exp

(∫ t0

ǫ

µ

t′
dt′
)]

=

(
ǫ

t0

)−ν
(25)
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where ν = M/k is a constant matrix. Then, Lu,d restricted to the zero modes approximately
diagonalizes

Yu,dY
†
u,d = Fu,d(1; t0)e

krgΦFu,d(t0; ǫ)Fu,d(t0; ǫ)
†ekrgΦFu,d(1; t0)

† (26)

Assume for simplicity that the nonzero entries of Φ are not so large that they contribute to
the hierarchy of the fermion wavefunctions on the TeV brane; one could of course consider
more general cases. Since ekrgΦ completely mixes flavor, the above expression has the basic
structure (Yu,dY

†
u,d)ij ≈ Fu,d(1; t0)ikζkk′Fu,d(1; t0)

†
k′j with ζkk′ ∼ O(1), which leads to mixing

angles of size θij ≈ (mi/mj)
−(log t0)/(kπrc) since F (1; t0) contains only a fraction log t0/ log ǫ

of the entire fermion mass hierarchy. Because the down-type masses are less hierarchical,
they will give larger contributions to the CKM angles than the up-type masses will. Then,
we are left to ask whether there is a value for t0 such that (md/ms)

−(log t0)/(kπrc) ∼ λC and
(ms/mb)

−(log t0)/(kπrc) ∼ λ2
C , where λC = |Vus| = 0.23. For instance, running the quark masses

up to the scale Q = 10 TeV allows md = 3.5MeV,ms = 30MeV , and mb = 2.2 GeV [22]
within experimental uncertainty, and these values satisfy (md/ms)

2 ≈ (ms/mb). The further
condition (md/ms)

−(log t0)/(kπrc) = 0.23 implies t0 ≈ 4 × 10−11. Such a value puts the CPV
source very far in the UV and therefore will have a very small effect on the excited mode
wavefunctions. Of course deviations from complete genericity are possible but as we will see
unnecessary.

3.4 Specific Values

For concreteness, we present here a specific choice of Φ and bulk masses that roughly repro-
duces the Standard Model fermions masses and KM matrix.

νU = (−0.831,−0.665,−0.241)

νD = (−0.788,−0.734,−0.632)

〈krΦ〉 =





0 1.039i −1.342i
−1.039i 0 1.481i
1.342i −1.481i 0





gu = 0.3

gd = 0.7

t0 = 10−12 (27)

These numbers are not intended to be an indication of what parameters are most expected
given some prior distribution. Rather, we want to indicate what is possible with O(1) UV
parameters. We set the KK scale µTeV ≡ ǫk to be 15v, where v is the Higgs vev 246 GeV, so
that the KK gauge bosons are at ∼ 9 TeV, in order to demonstrate that θ̄ is sufficiently small
in this case. As we discuss in section C, electroweak constraints force µTeV to be around 20v,
so that θ̄ does not provide the strongest constraint on the model.

We obtain the following quark masses for the zero mode and first excited modes:

mu = ( 1.6 MeV, 420 MeV, 176 GeV, 9.8 TeV, 10.3 TeV, 10.7 TeV)

md = ( 3.5 MeV , 41 MeV, 2.1 GeV, 9.6 TeV, 10.1 TeV, 10.4 TeV) (28)
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The absolute value of the KM matrix entries are




|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|



 =





0.982 0.185 0.0091
0.185 0.980 0.046
0.012 0.045 0.998



 (29)

and the rephasing invariant ∆(4) ≡ Im(V11V
†
12V22V

†
21) = 7.6 × 10−5 Because of mixing with

the excited modes, the CKM matrix for the zero modes is not exactly unitary. The first and
second rows satisfy

|Vud|2 + |Vus|2 + |Vub|2 − 1 = −0.0021

|Vcd|2 + |Vcs|2 + |Vcb|2 − 1 = −0.0024 (30)

which is at the limit of current bounds on unitarity [2] 3 and decreases proportional to
1/m2

KK. This is further enhanced by
∑∞

n=1 n
−2 = π2/6 when we include several higher KK

modes.

3.5 Fermion Wavefunction Dependence on the Bulk Masses

The dependence of the KK fermion wavefunctions on their bulk masses will be important for
all of our phenomenological constraints. In particular, as we will now discuss, the value of
the KK fermion wavefunctions in the IR is very insensitive to flavor violation from sources
in the bulk, and especially in the UV.

Most of the qualitative features of the twisted excited mode wavefunctions can be under-
stood in the absence of twisting. The method we use for solving the wavefunctions with and
without twisting is reviewed in appendix A. To begin, we note that in the single-generation
case, the left-handed mode wavefunctions are given approximately by

fL(t) =







√
2tJ

−
1
2
+ν

(xt)

J
−

1
2
+ν

(x)
, ν > −1

2

−
√

2tJ 1
2
−ν

(xt)

J 1
2
−ν

(x)
, ν < −1

2

except for the zero mode, for which fR vanishes and it is easy to solve for fL:

f 0
L =

√

1 + 2ν

1− ǫ1+2ν
tν (31)

An important point is that the wavefunctions of the excited modes depend weakly on
the values of the ν’s, which are the source of flavor-breaking. Indeed, up to O(ǫ) corrections,
the KK modes at the TeV brane are all

√
2, independent of the value of ν. This plays an

important role in suppressing flavor-violation, since it reduces the flavor-violation in the KK
mode wavefunctions.

The reason for this is that the behaviour near the UV boundary approximately fixes the
phase of the fL modes, so that there is no ν-dependent phase shift, as there would be if
we had constant bulk masses ν in flat space. This follows from the fact the fL are a linear
combination of a regular mode and a singular mode in the t ∼ ǫ region, and the regular mode

3See their section 11.4
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vanishes at t→ 0. The singular mode is therefore very suppressed, and the turnaround point
(where f ′

L(t) = 0) from singular to regular mode occurs at very small t:

tturnaround =

(
4ν2 − 1

x2
ǫ−2ν−1

) 1

1−2ν

(ν < −1

2
) (32)

so in the warped space case, the phase shift due to ν is small and suppressed by powers of
ǫ. Another difference is that there is less variation required among the ν’s in warped space,
because of an enhancement from krc ∼ 10. The zero modes at the IR brane in warped space
are

f (0)(t = 1) =

√

2ν + 1

1− e−(2ν+1)krcπ
(33)

≈
√

|2ν + 1|e−|ν+ 1

2
|krcπ (ν < −1

2
) (34)

and therefore we need ν + 1
2
’s of size 1

krcπ
log((mt/mu)

1/2) = 0.17. This might perhaps be

considered a little more tuned than in flat space, since the ν’s need to fall close to −1
2

in warped space. However, once the ν’s are fixed from experimental constraints, the KK
mode wavefunctions are more flavor universal which leads to much weaker phenomenological
constraints.

4 Interactions in the KK Reduced Theory

4.1 Yukawa Interactions

In this subsection we determine the flavor structure of the Yukawa interactions. In particular,
we will show that just like the charged W interactions, the Yukawas can be written entirely
in terms of the CKM matrix.

To begin, we plug back in to Eq. (10), and find that the effective 4D Yukawa interactions
between zero modes become 4

S4D Yukawa =

∫

dx4√−g
{

q̄Lh̃Y
(0)
u u

(0)
R + q̄LhY

(0)
d d

(0)
R

}

, (35)

where Y
(0)
u and Y

(0)
d are defined by

Y (0)
u = λuF

(0)
u |φ=π, (36)

Y
(0)
d = λdF

(0)
d |φ=π. (37)

and λu,d are just real numbers. As we showed explicitly in the previous section, in extra

dimensional scenarios, zero mode wavefunctions F
(0)
u,d are complex but have real determinant.

Thus, from Eq. (2) we see that θ̄ vanishes at tree-level while CP violation in the weak
interactions does not. In order to calculate the radiative corrections to this tree-level result,

4Here we denote fields in the KK reduced description by lower-case letters, as in equation 16. For example,

u
(i)
R is in the KK tower of the 5D field UR, while H and h are the same since H is a brane-localized field in

the 5D description.
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we need to work out the interactions of the effective theory. The KK tower of fermions has
interactions that are simple extensions of those of the Standard Model, though with some
non-trivial consequences. In the SM, the only source of masses is the Yukawa interactions,
and so going to the mass eigenbasis pushes all CP violation into a single unitary KM matrix in
the gauge kinetic terms. In contrast, extra dimensional models contain Yukawa interactions
that mix different KK levels, as well as KK mass eigenvalues from the dimensional reduction.

Let us consider the effective 4D mass matrix, limiting the following discussion to the zero
modes and first excited modes. Our arguments can be extended easily to the entire KK
tower. We will group the left and right-handed up-like modes together

uL = (u
(0)
L , u

′(1)
L ), (38)

uR = (u
(0)
R , u

(1)
R ), (39)

where each is a vector of six fields: three for the zero mode, and three for first excited modes.
The “zero” mode for uL is just the brane-localized up-type component of the doublet qL,
whereas u

(0)
R , u

′(1)
L , u

(1)
R are zero and KK modes of the bulk field UR (recall that there are no

bulk qL’s). Note that the ordering has been chosen so that the mass matrix is approximately
diagonal in this basis. The effective 4D mass matrix receives contributions from Yukawa
interactions and KK masses:

S4D mass ⊃
∫

d4x {ūLMuuR} , (40)

Mu = vYu +mu, (41)

Yu =

(

F
(0)
u F

(1)
u

0 0

)

, (42)

mu =

(
0 0

0 m
(1)
u

)

(43)

where mu is a diagonal matrix containing the excited mode masses that arise from the KK
reduction in the absence of the Higgs interactions. We will refer to this basis as the “KK
basis”. Moreover, unlike in the SM, since the Yu does not commute with Mu, the Yukawa
matrix for the KK tower is not diagonal in the mass eigenbasis.

Defining Yd,Md, mD analogously, we perform bi-unitary transformations that diagonalize
the mass matrices:

LuMuR
†
u = µu, (44)

LdMdR
†
d = µd, (45)

where µu,d are the (real and diagonal) physically observable fermion mass matrices. The
Yukawas in the mass eigenbasis can be slightly simplified as follows. It will be useful here
and throughout to define the projection matrix onto zero modes:

P0 ≡
(

1 0
0 0

)

(46)

It is clear that vYu,d = P0Mu,d. The transformation of this equation into the mass eigenbasis
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takes the form

vLuYuR
†
u = Lu

(
1 0
0 0

)

L†
uµu

vLdYdR
†
d = Ld

(
1 0
0 0

)

L†
dµd (47)

Notice the presence of only L’s on the RHS. This has the important consequence, mentioned
in the introduction, that flavor-changing in the W and Higgs interactions is controlled by a
single CKM matrix

VCKM = LuP0L
†
d (48)

Vuu = LuP0L
†
u = VCKMV

†
CKM (49)

Vdd = LdP0L
†
d = V †

CKMVCKM (50)

Equation 47 can therefore be rewritten as

vYu,d = Vuu,ddµu,d (51)

for interactions with neutral Higgses. We will find it convenient to work in a gauge where
the longitudinal modes of W± are kept explicitly as the goldstone modes h±. In the mass
eigenbasis, the h± interactions satisfy vYd = VCKMµd, vYu = V †

CKMµu.
This is very similar to the Standard Model, where all flavor-changing is controlled by a

single CKM matrix. In particular, this is a sufficient condition for radiative corrections to θ̄
and dimension-5 EDM operators to vanish at 1-loop, as we will discuss in section 5.2. We
note that, unlike in the Standard Model, VCKM is not unitary. However, in the limit that
the KK masses are large, mixing between the zero modes and KK modes approaches zero.
In this limit, VCKM restricted to the KK modes vanishes, and restricted to the zero modes is
exactly the unitary CKM matrix of the Standard Model.

The structure of the mass matrices has an interesting and important consequence for the
mixing between zero modes and KK modes. Compared to models with doublets localized
in the UV, the mixing between the doublet zero modes and KK modes is greatly enhanced,
while that between singlet zero modes and KK modes is greatly suppressed. The reason is
that Lu diagonalizes MuM

†
u while Ru diagonalizes M †

uMu, and these have different orders
of magnitude in the off-diagonal components between zero modes and KK modes. More
precisely, MuM

†
u has zero-mode-KK-mode mixing from the block matrix vF

(1)
u M

(1)
u while

M †
uMu has zero-mode-KK-mode mixing from the block matrix (v2F

(0)†
u F

(1)
u ). As we review

in section A.1, the size of excited mode wavefunctions in RS in is F
(1)
u ∼

√
2. Thus, the

mixing for the doublets is therefore of the order (Lu)ij ∼
√

2v/mKKf , while that for the
singlets is of the order (Ru)ij ∼

√
2(vm0/m

2
KKf), where m0 is the zero-mode mass5.

5 We have introduced the notation mKKf to indicate the mass of KK fermions and mKKg for the gauge
bosons.
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5 CP and Flavor Constraints

5.1 Contributions to Φ interactions from Higher-dimensional Op-

erators

The vanishing of θ̄ at tree-level depended crucially on the form of the fermion couplings to
Φ. For this reason, one might worry that higher-dimensional operators could destroy this
result. This is not the case, however. The only higher-dimensional interaction Φ can have
with a fermion bilinear other than Ψ̄Ψ is through

L ⊃ F (Φ)ijDMΨ̄iΓ
MΨj (52)

This does not contribute to the Ψ wavefunction for the following reason. Since Φ vanishes
on the boundary, all boundary terms involving Φ vanish as well. Under the assumption that
〈Φ〉 and the bulk masses (the only sources of flavor symmetry breaking in our model) are
generated spontaneously, then DMΨ̄iΓ

MΨj is the divergence of a current that is conserved
up to a chiral anomaly on the boundary [37]. Since the Φ field vanishes on the boundary,
and DMJ

M
ij vanishes off the boundary, these higher dimensional operators do not contribute

to the fermion wavefunctions 6.
In addition, one might worry that Φ could couple directly to GG̃ through higher dimen-

sional operators of the form

L ⊃ GABGCDDEF (Φ)ǫABCDE , (53)

where F (Φ) is a function of Φ and the form of this operator is again constrained by the 5D
AdS isometries. However, restricting to the gluon zero modes, which have flat wavefunctions,
this operator is a total derivative of Φ and therefore integrates to a vanishing boundary term
in the low-energy theory.

Finally, as we have already mentioned in the introduction, sequestering Φ from the TeV
brane eliminates the higher-dimensional operator ΦijQ̄LiHURj.

5.2 The EDM Operator and θ̄ at One Loop

As we saw in section 4, extra dimensional models generate Hermitian bulk fermion wave-
functions which force θ̄ to vanish at tree level. In this section, we show that by also taking
the quark doublets to be brane-localized, we can eliminate θ̄ (and any EDMs) at one loop
level.

To begin, let us consider the higher dimension operator

OEDM =
d̄Lγ

µνF̃µνdR
ΛEDM

, (54)

which is phenomenologically relevant for the neutron EDM, and is constrained by experiment
to be dn < 10−24e cm [24].

6Strictly speaking, the brane Yukawas explicitly break the U(3)3 flavor symmetry corresponding to this
current down to the diagonal subgroup. However, this breaking occurs on the TeV brane, sequestered from
the Φ field, and is therefore not a problem.
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In the past this EDM operator has been quite constraining for models embedded in
warped backgrounds. For example, in [25] the authors assume anarchic brane Yukawas
along with bulk doublet and singlet fermions, and as a result the EDM operator is generated
at one loop via a virtual Higgs. Consequently, the KK gauge boson masses are constrained
to be & 10 TeV for that model. As we will now show, with the quark doublets on the IR
brane, this one loop contribution vanishes.

Even without evaluating the one loop diagram, we can immediately see that this contri-
bution explicitly vanishes because its corresponding spurion vanishes. The spurion for the
down-type quark EDMs is fixed by flavor symmetries to be

di ∝ Im
(

Ld(Yu(M
†
uMu)

nM †
u + Yd(M

†
dMd)

nM †
d)YdR

†
d

)

ii
, n = 0, 1, . . . (55)

where the ii subscript labels the down-type quarks (zero and excited modes). Also, here n
denotes some number of mass-squared insertions.

This contribution vanishes for essentially the same reason that it vanishes in the Standard
Model. Using equations 44-51, we see that the above term is

di ∝ Im
(

V †
CKMµ

2n+2
u VCKMµd + Vddµ

2n+2
d Vddµd

)

ii
n = 0, 1, . . . (56)

It follows from the fact that VijV
†
ji = |Vij|2 is real for any matrix V (no sum on i, j implied)

that the above term is also real.
Actually, the vanishing of EDMs at one loop also implies the vanishing of θ̄ at one loop.

This is important because in most models of spontaneous CP breaking, even if θ̄ vanishes at
tree level, one-loop radiative corrections force the scale of CP breaking up to near the GUT
scale. To see that IR brane-localized fermions remedy this, recall that [29]

θ̄ = arg det(Mu + δMu) det(Md + δMd)

≈ ImTr (δMu/Mu + δMd/Md) + . . . , (57)

where the δ’s denote contributions from one loop corrections, and we have assumed that
arg det(MuMd) vanishes because of hermitian bulk fermion wavefunctions. the EDM opera-
tor, the contribution to θ̄ from, say the down-type quarks, is proportional to a spurion:

θ̄ = ImTr
(

(Yu(M
†
uMu)

nM †
u + Yd(M

†
dMd)

nM †
d)YdM

−1
d

)

, n = 0, 1, . . . (58)

=
∑

i

di
(µd)i

= 0. (59)

Contributions to the EDMs and θ̄ from one loop diagrams with KK U(1)Y bosons vanish
via similar arguments. Moreover, loops of SU(2) weak gauge bosons do not contribute
because they do not couple to right-handed fields. Again, this is only the case because the
left-handed doublets are IR-localized. If this were not the case, then weak bosons would
couple to their right-handed bulk partners and contribute at one loop.

5.3 θ̄ at Two Loops from W ’s and Higgses

Thus, we have shown that the leading contributions to the EDMs and θ̄ enter at two loops. At
this loop level, an evaluation of θ̄ becomes far more complicated because of the proliferation
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of diagrams, and so we find it useful to first analyze the contributions in terms of their
spurions.

We will address diagrams with KK gluon and hypercharge boson (B) contributions in the
next subsection. Such contributions are sufficiently small only in the small t0 limit where the
KK fermion wavefunctions are diagonal. We first analyze the contributions from diagrams
with W±,W 3, and Higgses, and zero mode gluons and B’s. In this case, the vertices are
all controlled by a single generalized CKM matrix VCKM, and their contributions to θ̄ are
sufficiently small even for t0 ∼ 1/100.

To begin, we note that any diagram renormalizing Mu,d necessarily ends with a right-
handed fermion line following an interaction with a Higgs or a neutral gauge boson (e.g.
gluon or U(1)Y KK mode, B(1)). However, the zero mode gluon and B interactions are
flavor-respecting so we can ignore their contributions. Also, we note that the right-most
interaction cannot be with the W±,W 3 or their KK excitations because these fields do not
couple to any right-handed fields.

Thus the dominant loop contributions to θ̄ will be from virtual W and h exchange, and
the final vertex insertion should be a Yukawa. We have already seen in section 4.1 that all
W and Yukawa contributions are formed out of quark masses and the (generalized) CKM
matrices:

VCKM = LuP0L
†
d (60)

Vuu = VCKMV
†
CKM (61)

Vdd = V †
CKMVCKM. (62)

For example, in mass eigenstate, the Yukawa interaction between two up-type quarks and a
Higgs field can be written as LuYuR

†
u = LuP0L

†
uLuMuR

†
u/v = Vuuµu/v. Note that written in

terms of V and µ, each Higgs propagator is necessarily accompanied by two factors of 1/v.
It is important to notice that the right-handed transformation matrices Ru,d do not

explicitly appear anywhere, since in mass eigenstate basis they are all absorbed into mass
insertions. This implies that the contributions to θ̄ can be written completely in terms of the
fermion masses, the Higgs vev v, the generalized CKM’s Vuu, Vdd, VCKM, and propagators. No
other terms appear. We emphasize the similarity of the above simplification to that of the
Standard Model, where all CP and flavor violation appears through the CKM matrix and
quark masses. Nonetheless, there are two essential differences that complicate the analysis:
1) there are heavy KK fermions above the W and h masses so additional factors of their
masses do not suppress the overall contribution, and 2) the CKM matrix is not unitary
because the doublet zero modes mix with left-handed KK singlets. Thus, θ̄ renormalization
occurs at two-loops instead of three-loops as in the SM.

There are four distinct topologies of two-loop diagrams with W and/or Higgs loops that
contribute to θ̄, as shown in figure 2: two Higgs lines, either nested or crossed, and a Higgs
line and a W line, either nested or crossed. The actual size of the largest contributions
depends on how close the excited mode wavefunctions are to being proportional to the
identity matrix, and therefore on the position t0 of the CPV field.

Contributions to θ̄ are IR convergent, and dominated by momenta ∼ mKKf . It is straight-
forward though somewhat laborious to calculate numerically the size of contributions to θ̄
from W,h loops. The largest contribution comes from the crossed higgs diagram with a
charged Higgs and a neutral Higgs, and a helicity flip on the first fermion line. This contri-
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Figure 2: There are four topologies of two-loop diagrams that give the dominant contribution
to θ̄, shown above. The largest of these corrections come from the crossed-neutral-higgs-
charged-higgs (upper left).

bution is given schematically by the two loop integral: 7

δθ̄ = v−4Tr

∫

(d4p)2Vf1f2
m2
f2

p2 −m2
f2

Vf2f3
(pµγµ −mf3)m

2
f3

p2 −m2
f3

Vf3f1
pµγµ −mf1

p2 −m2
f1

(
1

p2 −m2
h

)2

,

(63)

where the fi run over the zero and excited mode fermions. Since fi run over up-like and down-
like quarks, V denotes the appropriate generalized CKM matrix for its given indices. For
example, Vf1f2 where f1 and f2 are both up-like denotes the f1f2 component of Vuu, etc. Here
we have chosen to completely ignore the momentum structure of the fermion propagators,
choosing instead to emphasize the parametric dependence of the integral. Also, note the
two factors mf2 in the first propagator, one of which arises from the mass insertion, and
the other which arises from the rewriting a Yukawa vertex as a CKM multiplied by a mass.
Both factors of mf3 come from this rewriting of neighboring Yukawa interactions. As in any
diagram with two Higgs loops, there is a factor of 1/v4. All diagrammatic contributions will
go parametrically as products of masses and generalized CKMs.

The largest contribution from equation (63) comes from when f1,2 are down-like and f3

is up-like (otherwise one requires three different generations to get a phase and therefore
more mixing angles). Thus, the three V ’s in the diagram are Vud, Vdd, and Vdu. If any of the
masses in the numerator come from zero modes, then this contribution is immediately very

7The following expression has only three interactions because we have canceled away the factor of Yu,dM
−1
u,d

in the θ̄ expression
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suppressed. As a result, since the contribution is maximal, then f2,3 must be KK modes.
Consider first the possibility that the remaining fermion line is also a KK mode. Then, the
entire diagram is suppressed by (at least)

δθ̄ . (mKKf/v)
4 Im

∑

f1,2,3∈KKf

1

(4π)4
(Vud)f1f2(Vdd)f2f3(Vdu)f3f1, (64)

where the fermions are summed only over KK modes. As it turns out, this on its own is
enough to be below experimental bounds. When fi, fj are KK modes, Vfi,fj

∼ (v/mKKf)
2,

as follows from the fact that V = LP0L
† and L contains zero-mode-KK-mode mixing of

order v/mKKf . This suppression and the loop factor just by themselves already result in a
suppression of (1/4π)4 (mKKf/v)

4 (v2/m2
KKf)

3 ∼ 3 × 10−7. There is additional suppression
from the fact that f1,2,3 must all be different, or else the product of V ’s has no imaginary piece.
This results in a suppression from mixing between generations. We compute this suppression
numerically. It is due to the fact that the KK mode wavefunctions F

(1)
u,d become flavor-

symmetric as t0 → 0. We find Vf1f2/Vf1f1 decreases to zero approximately as t
1/2
0 (or faster

in some cases) and thus one requires only t0 . 10−4 in order to put the above corrections to
θ̄ safely below experimental constraints. Finally, there is an additional suppression beyond
what is contained in equation (64), due to a partial cancellation from the interchange of two
KK modes. That is, (Vud)f1f2(Vdd)f2f3(Vdu)f3f1 + f1 ↔ f2 is real. If the KK mode masses
were exactly equal, this cancellation would be exact; as it is, it implies only a cancellation
of about |(mf1 −mf2)/mf1| ∼ 1/10.

Similar but slightly different considerations imply that the contribution with a single
zero mode internal quark is roughly the same size. That is, say f1 = (u, c, t). As before,
the dominant contribution must have two different KK modes or the phases cancel. There
is also a quite drastic suppression from the fact that the zero mode masses are much smaller
than the typical momenta, so the zero mode propagators are approximately flavor respecting.
Summing over them therefore approximately removes phases. In particular, this means that
the contribution from a single zero mode internal quark is approximately equal to the con-
tribution from all KK mode quarks, since the sum

∑

j(Vdu)KK1,j(Vud)j,KK2
(Vdd)KK2,KK1

) =
(VduVud)KK1,KK2

(Vdd)KK2,KK1
is real. Putting in the weak m-dependence in the fermion

propagators then implies that these two contributions are roughly equal in magnitude rather
than exactly equal in magnitude (and opposite in sign). So the contributions with zero mode
internal quarks are small as well. We therefore find that the size of radiative corrections to
θ̄ from W and higgs loops is

δθ̄ ∼ 3× 10−8t0 (65)

We note that this result applies when the SU(2)L gauge group is confined to the IR brane.
When SU(2)L is in the bulk, there are W KK gauge bosons that couple more strongly to
the TeV brane by a factor of

√
2krcπ than the zero mode KK gauge bosons do. Hence the

coupling is enhanced by a factor of gw
√

2krcπ over the Yukawa interactions, and the radiative
corrections are approximately

δθ̄ ∼ 2× 10−6t0 (66)

which is below the bound for t0 . 10−4. In the next section, we will consider bigger contri-
butions to θ̄. The arguments in this section relied upon the fact that all CPV was controlled
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in the Higgs and W interactions by a single VCKM matrix. However, the KK gluons introduce
new sources of CPV that are not controlled by a single VCKM matrix. In the next section,
we will provide a different analysis of the two-loop corrections to θ̄ that will be completely
general and applies to all two-loop radiative corrections, gluons as well as W and Higgs, but
which is valid only in the small t0 limit.

5.4 θ̄ from Flavor Spurions

In this subsection we present the estimate of the contributions to θ̄ in the small t0 limit from
two loop diagrams containing neutral currents. The estimate is based on a flavor spurion
analysis we describe in detail in appendix B. Our method is also applicable to diagrams
containing charged currents.

In the small t0 limit, the full mass matrices take the form

Mu,d =

(

F
(0)
u,d

√
21

0 M
(1)
u,d

)

(67)

All of the flavor-mixing effects manifestly arise from the F
(0)
u,d matrices. For convenience, we

define f
(0)
u,d = L

(0)
u,dF

(0)
u,dR

(0)†
u,d as the matrix of eigenvalues of F

(0)
u,d , proportional to the zero mode

masses. It is straightforward to compute numerically that the left-handed diagonalization
matrices Lu,d for the full mass matrix then take the form

Lu,d =

(

L
(0)
u,d −L(0)

u,d
v

mKKf
v

mKKf
1

)

(68)

plus small deviations. The lower left-hand block of the above matrix is only diagonal and
not proportional to the identity matrix because there are small ( O(10%) ) splittings in the
KK fermion masses. We find numerically that given the above structure for Mu,d and the
Standard Model values for the zero mode masses, deviations from equation 68 are at most
O(10−13) in Lu and even smaller in Ld. Naively, the contributions to θ̄ from Lu,d of the
form 68 are much greater than 10−10. However, as we show in appendix B, our final result
for the size of θ̄ in the small t0 limit assuming Lu,d takes exactly the form 68 will be very
small (O(10−15)). In fact it is exactly the O(10−13) deviations in the up-type matrices that
are responsible for the largest contributions to θ̄. We find that at sufficiently small t0, the
contributions to θ̄ are independent of t0 and of the size

θ̄ ≈ 10−13 (small t0) (69)

5.5 Unitarity of VCKM

Due to mixing between zero-modes and KK modes, the full CKM matrix restricted to zero
modes is not exactly unitary. In models with UV-localized doublets, this effect is one to
two orders of magnitude below the bound of current experimental constraints [22]. However,
because of the larger mixing between zero-modes and KK-modes when doublets are on the
TeV brane, this effect is much larger in our model. The strongest constraints on unitarity
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can be parameterized by ∆Vi ≡ 1−
∑3

j=1 |Vij|2. The mixing is approximately O(
√

2v/mKKf)
for the doublets, so

∆Vi .
2v2

(m
(1)
KKf)

2

π2

6
(70)

where the additional factor
∑

n
1
n2 = π2/6 approximates the contribution from the tower

of KK modes with masses ∼ m
(n)
KKf ∼ nm

(1)
KKf . This is at the level of current experimental

constraints when mKKf = 9−12TeV. This is comparable to though weaker than electroweak
constraints on the model.

5.6 Flavor-Changing Neutral Currents

Strong constraints on physics beyond the Standard Model arise from dimension-6 flavor-
changing operators:

L∆F=2 ⊃
zsd
Λ2

(d̄LγµsL)
2 +

zbd
Λ2

(d̄LγµbL)2 (71)

There are stronger constraints on the R-L operators such as (sLdR)(dLsR). However, because
of the small mixing in the right-handed fermions, this is very suppressed and the dominant
constraints come from the above operators (see equation 119, which is nearly flavor-diagonal
when restricted to zero modes). With Λ ≡ TeV, the constraints on the z coefficients are [23]

Im(zsd) . 6× 10−9 ǫK

zbd . 6× 10−6 ∆mB (72)

These operators get contributions from KK gluon exchange. The KK gluons, like all KK
gauge bosons, are peaked at the TeV brane, with χ(i)(1) = 4.72 ≈

√
2krc. In the case of

anarchic Yukawas with the left-handed fields localized on the TeV brane, the constraints from
FCNCs would be much more severe. However, the situation is quite different with sequestered
flavor and CP violation. When flavor-violation is sequestered, the quark-KK-gluon vertices
become approximately flavor conserving in the mass eigenbasis. We have already worked out
the form of the KK gluon interactions with the left-handed fermions in the mass eigenbasis in
equation 121. Here, we are concerned with interactions with two zero mode fermions, which

are described by the upper-left block of 121: L
(0)
d

(

χ(1)1 + v
mKK

DdL
v

mKK

)

L
(0)†
d . The matrix

L
(0)
d is not exactly unitary, so L

(0)
d L

(0)†
d has some off-diagonal components that contribute to

zsd, zbd. We find numerically that, given our values for the ν’s and sampling over random
Φ vevs, that (L

(0)
d L

(0)†
d )sd ≈ 4Vsd

δm
mKK

v2

m2
KK

, where δm ≈ 0.1mKK is the small splitting in the

KK fermion mass eigenvalues. Mixing between the first and third generation is even more
suppressed: (L

(0)
d L

(0)†
d )bd ≈ 0.1Vbd

δm
mKK

v2

m2
KK

.

Gluon exchange involves two of the above interactions, so the contribution to (b̄Lγµd)
2/Λ2
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in the small t0 limit is approximately 8

zbd ≈ (1.4)(2kπrc)g
2
s

[λ3
C0.1(δm/mKKf)(v/mKKf)

2]

m2
KKg

≈ 6× 10−6

(
400GeV

mKKg

)6

(73)

where the 1.4 has been included to account for contributions from higher KK modes.
The constraints from ǫK are significantly more severe:

Im(zsd) ≈ (1.4)(2kπrc)g
2
s

[λC4(δm/mKKf)(v/mKKf)
2]

m2
KKg

≈ 9× 10−6

(
10TeV

mKKg

)6

(74)

6 Conclusion

We have considered a new solution to the strong CP problem based on spontaneous CP
violation in RS models. We sequester the source of CP violation, which we assume results
from the vev of a scalar field localized near the UV brane, from the Yukawa interactions
in the IR with the Higgs, which we assume respect a large flavor symmetry. In order to
suppress radiative contributions to θ̄, we localize the doublet quarks on the IR brane, which
pushes the scale of KK gauge bosons up to be & 15-18 TeV. We find θ̄ suppressed to as little
as 10−13.

Let us contrast our model with other models of spontaneous CPV, beginning with the 4D
dual of our warped scenario. Interestingly, the mechanism that enforces a vanishing strong
CP phase at tree level in the gravitational theory is slightly different from in the CFT dual. In
5D the hermiticity of bulk fermion mass matrices is enforced by higher dimensional spacetime
symmetries. Where the dual is conformal (that is, excluding energies near CFT breaking),
these masses correspond to anomalous dimensions, which must be hermitian simply because
they are renormalizations of the kinetic terms.

Let us consider the structure of the CFT as we flow down from high energies. In the UV,
CP is a valid symmetry and the theory is conformal. At this scale, the UV localized SM
fermions are present in vector-like pairs and as fundamental objects. At the scale ΛCPV the
CFT strongly couples, generating a bound state scalar CP-on Φ which spontaneously breaks
CP. At this point conformal symmetry is maximally violated by strong dynamics, so we
would naturally assume that CP phases enter the theory quite generically. However, as we
can compute in the gravity theory, this is not the case, and strong dynamics introduces only
(hermitian) wavefunction renormalizations of the (now partly composite) fermions. Below
this scale, the residual CFT gauge symmetry flows down to the IR brane, where it strongly
couples again, yielding a composite Higgs scalar and fermion composites corresponding to
the heavier SM fermions. In general, the 4D dual of our model works by keeping all phases
inside wavefunction renormalizations.

8 We assume mKKg ≈ 2.45
π

mKKf , which typically follows from the equations of motion for KK gauge
bosons and KK fermions in RS models.
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This is similar to what we will call theories of “wavefunction renormalization.” These
models utilize spontaneous CP violation, but subject to symmetries that effectively sequester
CP phases in wavefunction renormalizations (or higher-dimensional wavefunctions) alone.
Because any renormalization of the kinetic energy term necessarily implies that the anoma-
lous dimensions are hermitian, these models forbid strong CP phases at tree level.

For example, in Hiller-Schmaltz [28], the supersymmetric non-renormalization theorem
is used to forbid CP phases from seeping into θ̄, which is only in the superpotential. Be-
cause CP violation occurs above the SUSY breaking scale, phases enter only into the Kahler
potential, and are thus hermitian up to SUSY-breaking effects. However, in order to ob-
tain appropriately large weak CP phases, these wavefunction renormalizations must be of
order unity, and so this theory is strongly coupled. As a result, precise model-dependent
observables are difficult to obtain, and moreover the inclusion of higher dimension operators
generated by these strong dynamics force the CP violating scale up to around 105 GeV, far
above future collider reach. Because our model is gravitational, it is completely weakly cou-
pled. Otherwise, the 4D CFT dual of our theory has many similarities to Hiller-Schmaltz,
except that conformal symmetry effectively replaces supersymmetry in terms of suppressing
phases in the potential.

Our model also has advantages over alternative models of spontaneous CP violation. For
example, consider the archetypal model of spontaneous CP violation, proposed by Nelson
and Barr [26,27]. This model assumes an exact CP symmetry in the UV, as well as additional
scalars and vector-like fermions at a high scale charged under the SM flavor group. After a
scalar gets a CP violating vev, θ̄ is forbidden at tree-level due to conditions placed on the
mass matrix by the GUT representations of additional fermions.

From a model-building point of view, our proposal can be seen as more minimal than
Nelson-Barr. First of all, while the inclusion of vector-like fermions charged under added
flavor symmetries is not necessary in a 4D model, it follows from the KK reduction in 5D.
In particular, 5D spacetime symmetries necessarily imply that parity is a symmetry of the
bulk, forcing heavy modes to appear in vector-like pairs. Furthermore, the mass of the new
vector-like states can be much lower. Finally, we note that since our model is in RS, we can
explain large hierarchies of mass scales through the warped geometry.
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A Bulk Fermion Wavefunctions

A.1 Wavefunctions Without Twisting

In this subsection we derive bulk fermion wavefunctions in a simply warped model with no
flavor twisting. A right-handed fermion in RS with bulk mass m = νk satisfies the wave
equation

(∂2
t + x2 − ν(ν + 1)

t2
)fR = 0 (75)

The solutions are

fR(t) =
√
t
(

βJ 1

2
+ν(xt)− αJ− 1

2
−ν(xt)

)

(76)

The three conditions that completely determine α, β, and x are the two boundary conditions,
fR(ǫ), fR(1) = 0, and the normalization

∫ 1

ǫ
f 2
R(t)dt = 1. It is useful to work out approximate

solutions first. The t = ǫ condition is, to lowest-order in ǫ,

0 = −2
1

2
+νx−

1

2
−ναǫ−ν

Γ(1
2
− ν) +

2−
1

2
−νx

1

2
+νβǫ1+ν

Γ(3
2

+ ν)
(77)

so α≪ β if ν > −1
2
, and α≫ β if ν < −1

2
. The boundary condition at t = 1 is therefore

0 ≈
{

J− 1

2
−ν(x), ν < −1

2

J 1

2
+ν(x), ν > −1

2

(78)

The n-th root of Jµ is well-approximated by
(
µ
2
− 1

4
+ n
)
π in the range 5 > µ > −1/2. Over

the range −1 < x < 1, this approximates x to within 5 %. So, we can take

x(n) ≈
{ (

ν
2

+ n
)
π, ν > −1

2(
−ν

2
− 1

2
+ n
)
π, ν < −1

2

(79)

It is convenient to take µ = |ν + 1
2
|. Continuing to take ǫ≪ 1, the normalization condition

for ν > −1
2

is

1 =

∫ 1

ǫ

f 2
R(t)dt =

β2

2
J2
µ+1(x) (80)

Thus, we have approximately

fR(t) =







√
2tJ 1

2
+ν

(xt)

J
−

1
2
+ν

(x)
, ν > −1

2
√

2tJ
−

1
2
−ν

(xt)

J 1
2
−ν

(x)
, ν < −1

2

where x satisfy equation 78. In terms of the coefficients α, β, this is

ν > −1

2
: α = 0, β =

√
2

J|ν− 1

2
|(x)

ν < −1

2
: α =

√
2

J|ν− 1

2
|(x)

, β = 0 (81)
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Thus, the left-handed excited mode wavefunctions are given by

fL(t) =







√
2tJ

−
1
2
+ν

(xt)

J
−

1
2
+ν

(x)
, ν > −1

2

−
√

2tJ 1
2
−ν

(xt)

J 1
2
−ν

(x)
, ν < −1

2

and the zero mode is:

f 0
L =

√

1 + 2ν

1− ǫ1+2ν
tν . (82)

A.2 Wavefunctions With Twisting

Solving for the wavefunctions can be complicated by twisting. However, because of the delta
function form of Φ, the bulk fermion wavefunctions can be straightforwardly solved for on
to the left and right of φ0, and then matched at the junction.

We now show this explicitly. The following discussion will hold equally well for U and D,
so we will drop all u, d subscripts and let X = gr〈Φ〉. Rewriting in terms of the t variable, we
find that δ(φ−φ0) = krtδ(t−t0), and so from Eq. (20) we can write µ = diag (νi)+Xt0δ(t−t0).
where νi ultimately sets the masses of the bulk fermions. Eq. (19) depicts the first order
wave equations for a bulk fermion written as a matrix differential operator acting on a matrix
wavefunction. For computational simplicity, let us consider a single column of this equation,
which constitutes a matrix differential operator acting on a vector wavefunction:

(

±∂t −
µ

t

)

fL,R = −xfR,L, (83)

⇒
(

−∂2
t +

µ(µ∓ 1)± tµ′

t2

)

fL,R = x2fL,R, (84)

where fL,R are 3-vectors, ’ denotes differentiation with respect to t, and x is a mass eigenvalue
which will be determined by the orbifold boundary conditions on the wavefunctions.

The second order equation in Eq. (84) has a well-known solution in terms of Bessel
functions,

fL = J+−(t)aL + J−+(t)aR, (85)

fR = J++(t)aR − J−−(t)aL, (86)

J±±(t) =
√
t diag(J± 1

2
±νi

(xt)), (87)

where the aL,R are constant 3 vectors defined piece-wise by

aL,R =

{
a+
L,R t > t0
a−L,R t < t0

(88)

As written, there are precisely four vectors (a+
L ,a+

R,a−L and a−R) of initial conditions to fix.
Since one of these is an overall normalization, this leaves three vector unknowns.

Now if we take fR to be odd under the orbifold symmetry, then it vanishes at the orbifold
fixed points,

fR(ǫ) = fR(1) = 0. (89)
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These two boundary conditions, along with the zeroth and first derivative boundary condi-
tions at t0 constitute four boundary conditions that will act to (over-)constrain the three

initial conditions for the fermion wavefunctions. Since this over-constrains the system, this
puts a constraint on x and fixes the allowed masses to a discretum. Enforcing equation 89
allows us to eliminate the aL’s and write

fR(t) =







(
J−−(1)J++(t)−J++(1)J−−(t)

J−−(1)

)

a+
R t > t0

(
J++(t)J−−(ǫ)−J−−(t)J++(ǫ)

J−−(ǫ)

)

a−R t < t0
(90)

Next, let determine the matching conditions at the third brane. Because the first order
equation in Eq. (84) relates the first derivative of the fermion wavefunction to a delta func-
tion, we know that there is jump discontinuity at t0. Moreover, without loss of generality,
we can regulate this jump with a linear interpolating function, so

fL,R(t0) =
1

2
(fL,R(t+0 ) + fL,R(t−0 )), (91)

where ± denote limiting values from the right and left. Our solutions will of course be
insensitive to this regulation.

The first boundary condition is then easily obtained by integrating the first order wave
equation over a small neighborhood around t0:

− fR|t
+
0

t−
0

−
∫ t+

0

t−
0

µ

t
fRdt = −x

∫ t+
0

t−
0

fRdt. (92)

Since the integrand on the RHS is not singular at t0 except for a discontinuity and it is
integrated over an infinitesimal range, its contribution vanishes. In fact only the delta
function component of µ survives the integration, yielding

fR(t+0 )− fR(t−0 ) = −1

2
X(fR(t+0 ) + fR(t−0 )), (93)

⇒ fR(t+0 ) = RfR(t−0 ), (94)

R =
1−X/2
1 +X/2

, (95)

≈ 1−X (96)

where the last relation holds in the limit that X is small.
Next, we find the second boundary condition at t0 by integrating the second order wave

equation over an infinitesimal neighborhood around t0:

− f ′
R|
t+
0

t−
0

+

∫ t+
0

t−
0

µ(µ∓ 1)± tµ′

t2
fRdt = x2

∫ t+
0

t−
0

fRdt. (97)

Plugging in for ν we find that

f ′
R|
t+
0

t−
0

±Xf ′
R(t0)−

1

t0
({diag(νi), X}+Xt0δ(0)) fR(t0) = 0. (98)
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Here we have introduced a δ(0) which can be easily removed by plugging in the first order
wave equation evaluated at t0:

− f ′
R(t0)−

1

t0
(diag(νi) +Xt0δ(0)) fR(t0) = −xfL(t0). (99)

Combining these equations and plugging in for fL(t0) in terms of fR(t+0 ) and fR(t−0 ) from
the first order wave equation, we finally obtain the two boundary conditions for the fermion
wavefunctions at t0:

fR(t+0 ) = RfR(t−0 ), (100)

f ′
R(t+0 ) = R−1f ′

R(t−0 ) + SfR(t−0 ), (101)

R =
1−X/2
1 +X/2

, (102)

S =
1

1−X/2
{diag(νi), X}

t0

1

1 +X/2
. (103)

The above equations, along with the two orbifold boundary conditions constitute four
linear matrix equations which can be combined (after plugging in fL,R) in order to yield an
equation relating a+

R and a−R

a+
R =

J−−(1)

J(1)
R

J(ǫ)

J−−(ǫ)
a−R (104)

and a single condition on a+
R:

G(x)a+
R = 0, (105)

where we have defined the matrix functions

J(t) ≡ J−−(t)J++(t0)− J++(t)J−−(t0), (106)

G(x) ≡ (−∂t0J(1)RJ(ǫ) + J(1)R−1∂t0J(ǫ) + J(1)SJ(ǫ))J−1
−−(ǫ). (107)

The matrix G(x) does not have zeros for any arbitrary x, and so this linear equation forces
x to take on a discretum of values. It is straightforward to numerically obtain the zeros of
detG(x), thus yielding the fermion mass eigenvalues xi. Then, the a+

R corresponding to the
mass eigenvalue xi is the null eigenvector of G(xi), and a−R is given by equation 104. Thus
from equation 90 we have the fermion bulk wave functions.

B Analysis of Flavor Spurions in small t0 limit

To begin, we go to mass eigenbasis, which is advantageous because this separates out the
flavor-mixing, which occurs only at interaction vertices, from other sources of flavor-breaking.
We consider the (broken) chiral flavor symmetry GF = (SU(3)L × SU(3)R)NKK which acts
separately on each KK level, treating the symmetry-breaking terms as spurions charged under
this symmetry. Also, let us first consider diagrams with only neutral current interactions,
and generalize our argument later to include both charged and neutral currents. Thus for
the present, loop diagrams necessarily contain only up-like or only down-like quarks, and
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we can first consider only with the part of GF which acts on the down-like quarks. We will
consider a general element of GF , ZL × ZR ×KL ×KR, where ZL (ZR) is a special unitary
transformation that acts on the left-handed (right-handed) zero modes and KL (KR) is a
special unitary transformation that act on the first excited KK left-handed (right-handed)
modes. Since the mass matrix, Ld, Rd, CdR, and CdL all break this symmetry, we treat their
zero mode and KK blocks as spurions. We will now describe these interactions in some detail
in the small t0 limit and catalogue the spurions under the broken flavor symmetry GF .

To begin, consider the interactions between fermions and gluons before KK reducing:

L ⊃ g3

√
πAµ

(
q̄iγ

µqiδ(t− 1) + Ūiγ
µUi + D̄iγ

µDi

)
(108)

Let us denote the wave-function for the (n)-th KK gauge boson by χ
(n)
A (t), in a convention

where

Aµ(x, t) =

N∑

n=0

A(n)
µ

χ
(n)
A (t)√
rc

(109)

In this convention, the zero mode wavefunctions χ
(0)
A (t) = 1/

√
π are flat, the excited mode

wavefunctions satisfy χ
(n)
A (1) ≈

√
2krc where n > 0. Because the zero mode wavefunction is

a constant and the fermion KK modes are orthonormal, the interactions with the zero mode
gauge boson are exactly flavor-respecting. This is of course the result of the exact gauge
symmetry.

As it turns out, the KK gluon interactions also possess an approximate flavor symmetry.
To see this, consider the coupling of the (n)-th KK gluon to the zero mode and first KK
mode fermions. We will write this interaction in terms of the uL,R basis defined in equations
39-43, where the approximate U(1)3 flavor symmetry is respected by the KK mode masses.
We refer to this basis as the “KK basis”, to distinguish it from the mass eigenbasis where
the full mass matrix including mixing with the zero modes and KK modes is diagonal.

In the KK basis, the gluon coupling to the uR is given by the integral of the KK wave-
functions over the fifth dimension:

C
(n)
R = gs

√
π

∫

χ
(n)
A (t)

(

F
(0)
u (t)†F

(0)
u (t) F

(0)
u (t)†F

(1)
u (t)

F
(1)
u (t)†F

(0)
u (t) F

(1)
u (t)†F

(1)
u (t)

)

dt. (110)

Here each F is a three by three flavor matrix. For the case of uL, the gluon interaction
matrix is simpler since the doublet fields have no KK excitations:

C
(n)
L = gs

√
π

∫

χ
(n)
A (t)

(
δ(t− 1) 0

0 F
(1)
u′ (t)†F

(1)
u′ (t)

)

dt, (111)

where Fu′ denotes the bulk wavefunction corresponding to the left handed KK excitation of
the right handed singlet u

(0)
R .

The coupling of the fermions to a KK gluon can be understood qualitatively by decom-
posing the gluon wavefunction into a flat “UV” piece that is constant and an oscillating “IR”
piece that vanishes in the UV:

χ
(n)
A (t) = χUV(t) + χ

(n)
IR (t) (112)

χUV(t) = − 1√
8krc

(113)

χ
(n)
IR (t) ≈

√

2krct sin

(

t
2n− 1

2
π

)

(114)
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The “UV” piece is flat and therefore, by orthonormality of the fermion wavefunctions, flavor-
universal. For C

(n)
R , the IR contribution roughly yields products of Fu’s evaluated near the

IR brane, and thus has the same order of magnitude as the Yukawa matrices. We thus obtain
qualitatively

C
(n)
R ≈ gs

√
π

(

− 1√
8kr

1 +
√

2krY †
uYu

)

. (115)

This implies that the KK gluon vertices that mix right-handed zero modes fermions and
right-handed KK mode fermions are suppressed by the zero mode masses, which we will find
later to be essential to making radiative corrections to θ̄ small.

The left-handed partners of the KK singlets have wavefunctions that vanish on the IR
brane, and their coupling to the KK gluon does not receive the full

√
2krc volume factor:

C
(n)
L ≈ gs

√
π

( √
2kr1 0
0 O(2)

)

. (116)

For radiative corrections to θ̄ to be small, we need small t0. We can describe the inter-
actions approximated in equations 115 and 116 more precisely in this small t0 limit, where
the KK mode fermion wavefunctions are independent of Φ but the zero mode fermion wave-
functions are not. The essential point will be that the only sources of flavor mixing are
the left-handed diagonalization matrices L

(0)
u,d for the zero modes and that the only new

flavor-violating spurions beyond those in the Standard Model that can contract with L
(0)
u,d

are suppressed by (v/mKKf)
2 or the usual mass matrix for the zero modes. Thus, we now

wish to demonstrate that all flavor-mixing in the gluon vertices can be pushed in the mass
eigenbasis into L

(0)
u and L

(0)
d .

First, we show that L
(0)
u,d are also the only sources of flavor mixing in the gluon inter-

action vertices. In particular, R
(0)
u,d can be absorbed into the diagonalizations of the zero

mode masses (and equivalently F
(0)
u,d) so that they manifestly do not contribute new sources

of flavor-mixing. We will restrict our attention to the gluon interaction with down quarks
for the moment, to avoid writing extra indices. First, note that since the KK fermion wave-
functions are diagonal in the present limit, their interactions with the KK gauge boson are
also diagonal in the KK basis. We can denote this by defining DdR = CdR,11, so DdR is a
diagonal matrix. Second, consider the interactions of the KK gauge bosons with a zero mode
fermion and a KK mode fermion. These are given by CdR,01 = gs

√
π
∫ 1

ǫ
χ(t)F

(0)†
d (t)F

(1)
d (t).

However, the integral receives only a negligible contribution from t < t0, and above that
F

(0)†
d (t) = F

(0)†
d (t0) times a diagonal matrix, according to equation 24. This implies that

at any point t > t0, F
(0)†
d (t) is related to F

(0)†
d (1) by a diagonal matrix. Thus, CdR,01 =

F
(0)†
d (1)D′

dR, where we have defined another diagonal matrix D′
dR. Finally, note that be-

cause the zero modes are UV localized and do not oscillate in the IR, they see the IR piece
χIR of the KK gluon wavefunction as essentially a spike near the IR brane, and thus the
qualitative approximation of CdR we gave earlier is quantitatively very good for the zero
modes: CdR,00 ≈ gs

√
π(− 1√

8krc
1 +
√

2krcF
(0)†
d F

(0)
d ). Furthermore, the effect of deviations

from this approximation are suppressed by the zero mode wavefunctions. The exact inter-
action contains the flavor-violating contribution F

(0)†
d DdR;0F

(0)
d , again with DdR;0 a diagonal

matrix. In the mass eigenbasis, this is f
(0)
d L

(0)
d DdR;0L

(0)†
d f

(0)
d . The small off-diagonal pieces
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of L
(0)
d DdR;0L

(0)†
d are then further suppressed by the hierarchy in zero mode masses, making

them completely negligible. Thus, in the KK basis, CdR takes the form

CdR = gs
√
π

(

χ(ǫ)1 + χ(1)F
(0)†
d DdR;0F

(0)
d F

(0)†
d D′

dR

D′
dRF

(0)
d DdR

)

(117)

Consider now the rotation to mass eigenbasis. The right-handed mixing between zero
modes and KK modes is suppressed by zero mode masses and v/mKKf , where we find nu-
merically the result

Rd =

(

R
(0)
d −R(0)

d F
(0)†
d

√
2v2

m2
KKf√

2v2

m2
KKf

F
(0)
d 1

)

(118)

We now use this to rotate CdR to the mass eigenbasis:

CdR →
(

χ(ǫ)1 + χ(1)f
(0)2
d f

(0)
d L

(0)
d D′

dR

D′
dRL

(0)†
d f

(0)
d DdR

)

+O(
v2f

(0)2
d

m2
KKf

) (119)

We have not written out some terms that are higher order in v2

m2
KK

. This is because they

can be written as spurions we have already included (times some diagonal matrices) and
thus can only give contributions that are suppressed by v2/m2

KK over those we are including.

The above form demonstrates our claim that R
(0)
d does not explicitly appear in the gluon

interactions, and thus the only source of flavor-mixing in the down-type interactions is L
(0)
d .

The matrix of KK gauge boson interactions with the left-handed fields is simpler. In the
KK basis, it takes the form we have already derived:

CdL =

(
χ(1)1 0

0 DdL

)

(120)

and thus in the mass eigenbasis does not contain any new flavor-breaking spurions beyond
DdL and those in Ld. Explicitly, it transforms to

CdL →




L

(0)
d

(

χ(1)1 + v
mKK

DdL
v

mKK

)

L
(0)†
d L

(0)
d

v
mKK

(χ(1)1−DdL)

(χ(1)1−DdL) v
mKK

L
(0)†
d χ(1)

(
v

m2
KK

+DdL

)



 (121)

In particular, the mass matrix supplies the three spurions f
(0)
d ,
√

21, andM (1), Ld supplies

the spurions L
(0)
d and v

mKKf
, and CdR and CdL supply the spurions F

(0)†
d D′

dR, DdR, and DdL.
Under the chiral flavor symmetry, these spurions transform like

f
(0)
d → ZLF

(0)
d Z†

R (122)√
21 → ZL

√
2K†

R (123)

f
(0)
d L

(0)
d D′

dR → ZRF
(0)†
d D′

dRK
†
R (124)

DdL → KLDdLK
†
L (125)

M1 → KLM1K
†
R (126)

L
(0)
d → ZLL

(0)
d Z†

L (127)
v

mKKf
1 → ZL

v

mKKf
1K†

L (128)
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Next, we estimate the value of θ̄ from a two loop diagram with neutral currents. First, we
note that in order to obtain a contribution to θ̄, a diagram must necessarily include four
factors of L

(0)
d . Otherwise the phase in the first flavor-mixing L

(0)
dij is precisely canceled by

mixing back through the inverse factor L
(0)†
dji . The flavor symmetry then fixes which spurions

can interleave around these four factors.
The only spurions that transform under ZL aside from L

(0)
d are f

(0)
d and v

mKKf
. The first

of these transforms on the right under ZR, so it must be squared in order to appear between
two L

(0)
d ’s. Note that these spurions are nothing more than the zero mode masses, and it is

exactly this argument that implies such a large suppression of θ̄ in the Standard Model.
The second of these, v

mKKf
, transforms on the right under KL, so it also must be squared

in order to appear between L
(0)
d ’s. Thus, it also gives a suppression comparable to (mb/v)

2.
Next, if the external mode is a zero mode, then at least one of the spurions must be

proportional to f
(0)
d (to see this explicitly, note that all of the spurions charged under ZR are

proportional to f
(0)
d ), which then cancels with the m−1

d in the expression for corrections to θ̄.
Thus, the minimum suppression allowed by the above argument is (v/mKKf)

7 = 3 × 10−12.
Finally, there is the fact that the overall contribution must be proportional to the Standard

Model phase invariant ∆(4) ≡ Im
(

L
(0)
d12L

(0)†
d22L

(0)
d21L

(0)†
d11

)

∼ 10−4 (see section 3.4). This puts

the final contributions from two neutral currents (or more specifically, two gluons) safely
below the experimental limits on θ̄. We note that, when all of the loops are from KK gauge
bosons, each vertex contains a large coupling g5χ(1) = g4

√
2kπrc .

√
70, which is very close

to the non-perturbative regime. In particular, each additional loop is suppressed only by a
factor of g2

4
2kπrc
(4π)2

.
We can now extend the above argument to loops including charged currents. In this

case, we must consider a separate flavor symmetry acting on up-type quarks and down-
type quarks: GF = GFu × GFd ≡ (SU(3)L × SU(3)R)NKK

u × (SU(3)L × SU(3)R)NKK

d , since
charged currents will generate diagrams with both up-like and down-like quarks. It is crucial
that the only new flavor-mixing spurions from charged currents arise from VCKM = LuL

†
d,

which in the small t0 limit takes the form

VCKM =

(

L
(0)
u L

(0)†
d L

(0)
u

v
mKKf

v
mKKf

L
(0)†
d

v2

m2
KKf

)

(129)

These new spurions therefore transform like:

V
(0)
CKM ≡ L(0)

u L
(0)†
d → Zu

LV
(0)
CKMZ

d†
L (130)

L
(0)
d

v

mKKf
→ Zd

LL
(0)
d

v

mKKf
Ku†
L (131)

L(0)
u

v

mKKf
→ Zu

LL
(0)
u

v

mKKf
Kd†
L (132)

v2

m2
KKf

→ Ku
L

v2

m2
KKf

Kd†
L (133)

Thus, in diagrams with charged currents, we have two different flavor-mixing spurions,
L

(0)
u and L

(0)
d . In a totally general case with two flavor-mixing spurions, we could get θ̄

contributions with only two insertions of mixing matrices. However, the present case is far
from generic, since there are no spurions other than V

(0)
CKM that are charged under both Zu

L
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and Zd
L. Thus, in order to make an invariant from both L

(0)
u and L

(0)
d , one must connect them

with additional factors of L
(0)
u,d. We can therefore apply our earlier arguments about spurions

charged under Zu,d
L,R. The phase invariant ∆(4) constructed from L

(0)
d is approximately the

same if we replace L
(0)
d by V

(0)
CKM since most of the CKM matrix comes from the down-like

quarks of our model. In particular, the largest new invariant that one can construct, even

with charged currents, is still
(

v
mKKf

)7

∆(4) ≈ 10−16.

There is one last subtlety if the charged currents are Higgs (equivalently, longitudinal
modes of the W zero mode), since its coupling to KK modes in terms of the above spurions
contains a large factor of mKKf/v. However, there is also no volume factor since the Higgs
is IR localized and has no KK modes, so the overall largest contribution for instance from a

charged Higgs and a KK gluon is of order δθ̄ ≈ g2
4

(
2kπrc
(4π)4

)(
v

mKKf

)5

∆(4) . 10−15.

C Precision Electroweak Constraints

Here, for completeness, we review the constraints from precision electroweak measurements
with a combination of bulk and brane fields. We will compute all constraints by matching our
UV theory to an effective 4d theory with only Standard Model fields. These constraints have
been discussed previously in the literature, see e.g. [30–33]. The most highly constrained
operators in the flavor-symmetric electroweak Lagrangian are

LEW ⊃ zWB

Λ2
(h†σah)W a

µνB
µν +

zh
Λ2
|h†Dµh|2

+
zshl
Λ2
i(h†Dµh)(l̄γµl) +

zthl
Λ2
i(h†σaDµh)(l̄γµl)

+
zshq
Λ2
i(h†Dµh)(q̄γµq) +

zthq
Λ2
i(h†σaDµh)(q̄γµq)

+
zhu
Λ2

i(h†Dµh)(ūγµu) +
zhd
Λ2

i(h†Dµh)(d̄γµd) +
zhe
Λ2
i(h†Dµh)(ēγµe) (134)

We present the constraints on the coefficients of these operators based on the χ2 com-
parison to the data performed in [31]. We consider only the 9 operators in equation (134) 9

the deviation from the χ2 for the standard model

∆χ2 ≡ χ2 − χ2
SM (135)

where χ2
SM is the χ2 value with all dimension-6 operators set to zero. Choosing the 9 operator

coefficients to minimize χ2 gives χ2
min = χ2

SM − 12.5.

C.1 Contributions from KK modes

The contribution to fermion-Higgs operators occurs, as with most of the constrained higher-
dimensional operators, at tree-level. The diagrams that generate zhψ are shown in figure 3

9 The constraints from 4-fermion operators are negligible for the cases we discuss. Operators involving
only quarks are weakly constrained and when SU(2)L is in the bulk operators involving leptons may be made
small by localizing the leptons sufficiently in the UV. When SU(2)L is on the brane, the doublet leptons
must be IR localized and thus the operators (l̄γµl)(l̄γµl) and (l̄γµσal)(l̄γµσal) are larger. However, in this
case there are no KK modes of W, Z bosons, and the effect of including constraints on these operators is
small.
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on the right. The contribution from hypercharge KK modes is10

zshψ
Λ2

≈ 1

8
g′2z2

vYψ ×
(( −kπrc

2
+ 1

2
ψ IR localized

1
4
− 1

4kπrc
ψ UV localized

))

(136)

zthψ
Λ2

≈ 1

4
g2z2

v ×
(( −kπrc

2
+ 1

2
ψ IR localized

1
4
− 1

4kπrc
ψ UV localized

))

(137)

where Yψ is the hypercharge of ψ and zv ≡ 1
µTeV

≈
√

6
mKKg

is the z-position of the IR brane.

The contributions to zthψ vanish when SU(2)L is on the IR brane. Consider first the case
where SU(2)L is in the bulk. Then the constraints from the above operators depend on
which fermions reside on the IR brane.

Figure 3: Diagrams that give contributions to electroweak observables at tree-level. The
left diagram contributes to T and the right contributes to fermion-Higgs operators. X(n)

indicates KK modes of bulk gauge fields.

The leading contribution to T is shown in figure 3 on the left, and have been calculated
before [35]11. The U(1)Y KK mode contribution and the SU(2)L KK mode contribution give

Π33(0) ≈ −v
2

4

(kπr)(g2 + g′2)(vzv)
2

8

(

1− 1

kπrc

)

Π11(0) ≈ −v
2

4

(kπr)(g2)(vzv)
2

8

(

1− 1

kπrc

)

(138)

Recall

T ≈ −16π(Π33(0)− Π11(0))

v2e2

≈ − 16π

v2g′2 cos2 θW
(Π33(0)− Π11(0)) (139)

10See eq 5.2 in [35].
11Their equation 4.7.
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It is related to the operator coefficient by

zh
Λ2

= −g
′2 cos2 θW

2πv2
T

= −g
′2

4
kπrcz

2
v

(

1− 1

kπrc

)

(140)

With SU(2)R in the bulk, the leading order piece in the volume factor (kπrc) cancels. With
mh = 113, we find, for ∆χ2 ≡ χ2 − χ2

SM,

SU(2)L SU(2)R L doublet mKKg,∆χ2=4.5 mKKg,∆χ2=9

In Bulk In Bulk In Bulk 26.0 22.7
In Bulk In Bulk On Brane 26.5 23.4
In Bulk Not Present In Bulk 28.0 24.4
In Bulk Not Present On Brane 22.4 20.0

On Brane Not Present On Brane 15.6 14.2

though as we have mentioned in order to address the strong CP problem we have L dou-
blets on the brane in our models. For 9 fit parameters, ∆χ2 = χ2− (χ2

min,9 +12.5) = 4.5(9.0)
for 95% (99%) confidence. Certain linear combinations of the fermion-Higgs operators are
effectively equivalent, via a field redefinition [32, 35], to contributions to S and T . When
the fermions are on the brane, this contribution to S is effectively negative [30], whereas
new physics usually gives a positive contribution to S. Therefore, it is not difficult, though
somewhat ad hoc, to introduce new particles that alleviate these constraints. A less ad hoc
option is to consider a heavy higgs, which increases S at the price of decreasing T . Contours
are shown in figure 4 for all doublets on the TeV brane, for SU(2)L i) on the brane or ii) in
the bulk, without SU(2)R gauged. Minimizing χ2 over mKKg, mh gives χ2

min,2 = χ2
SM − 2.13

in the former case and χ2
min,2 = χ2

SM − 2.25 in the latter case. In both cases, electroweak

constraints force m
(1)
gauge & 15TeV.

D Domain Walls

Since CP is a discrete symmetry that is spontaneously broken at the scale ECP = µTeVt
−1
0 ,

domain walls will form as the universe cools and passes through a phase transition. It is
therefore important that this phase transition happen only before inflation and not after.
During inflation, the universe rapidly cools to the de Sitter temperature TdS = E2

inf/Mpl,

where Einf = V
1/4
inf is the energy scale of inflation. If ECP > TdS, then the phase transition

will occur during inflation. There is also a danger that the universe will reheat above ECP,
and then domain walls would form again after inflation, as the universe cooled from above to
below ECP. In order to avoid this, it is necessary that the reheating temperature Trh < ECP.
If reheating is efficient, then Trh = Einf , but in general the reheating temperature can be
much lower if the efficiency is very small, i.e. Trh = ǫeffEinf . Both constraints are satisfied
for ECP = 3TeV if for example Einf ≈ 1011GeV and ǫeff ≈ 10−8.
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Figure 4: Plots of ∆χ2 = χ2 − χ2
SM contours (90%, 95%, 99%) when the doublets are all

on the brane. The left(right) plot shows the case when SU(2)L is in the bulk (on the TeV
brane).

E KK Fermion Mass Matrix

The complete mass matrix for the fermions involves the masses of the kk modes, which get
contributions from the yukawa interactions. In order for θ̄ to truly vanish at tree-level, it
is important that these mixing terms do not ruin the reality condition on the mass matrix
determinant. In fact, it is easy to see that they do not, with or without doublets in the bulk.
Consider first the case with doublets in the bulk. Then, being very explicit, before going to
the yukawa eigenbasis, the mass matrix for the zero modes and the first two excited modes
takes the following form:










u
(0)
L

u
(1)
L

u
′(1)
L

u
(2)
L

u
′(2)
L










T 








vF q(0)†F u(0) 0 vF q(0)†F u(1) 0 vF q(0)†F u(2)

vF q(1)†F u(0) M
(1)
Q vF q(1)†F u(1) 0 vF q(1)†F u(2)

0 0 M
(1)
U 0 0

vF q(2)†F u(0) 0 vF q(2)†F u(1) M
(2)
Q vF q(2)†F u(2)

0 0 0 0 M
(2)
U



















u
(0)
R

u
′(1)
R

u
(1)
R

u
′(2)
R

u
(2)
R










where M
(i)
U denotes a diagonal, real mass matrix of the KK masses. This matrix is hermitian,

thanks to the many empty entries, as long as M
(i)
U ,M

(i)
Q , are hermitian and F q(0)†F u(0) has

real determinant. Notice that F q(i)†F u(j) does not affect the determinant of this matrix be
hermitian for any (i, j) except for (0, 0).

When doublets are on the brane, the mass matrix is even simpler.

L ⊃






u
(0)
L

u
′(1)
L

u
′(2)
L






T 



vF u(0) vF u(1) F u(2)

0 M
(1)
U 0

0 0 M
(2)
U










u
(0)
R

u
(1)
R

u
(2)
R






which clearly has real determinant.
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