163 research outputs found
Planning research in the area of launch vehicle and propulsion programs Progress report, 1-31 Mar. 1968
Program and report reviews on launch vehicle upper stages and propulsion of advanced reentry spacecraf
Interactive Effects of Drought and Fire on Co-Existing Woody and Herbaceous Communities in a Temperate Mesic Grassland
Increased drought and woody encroachment are likely to have substantial and interactive effects on grassland carbon and water cycling in the future. However, we currently lack necessary information to accurately predict grassland responses to drought-by-fire interactions in areas experiencing woody encroachment. A more thorough understanding of these interactive effects on grass-shrub physiology would improve the effectiveness of demographic vegetation models and refine predictions of future changes in grassland ecosystem function. To this end, we constructed passive rainout shelters over mature Cornus drummondii shrubs and co-existing grasses in two fire treatments (1-year and 4-year burn frequency) at the Konza Prairie Biological Station (north-eastern Kansas, USA) that reduced precipitation by 50%. Plant responses to drought and fire were monitored at the leaf-level (gas exchange, predawn and midday water potential, turgor loss point) and the whole-plant level (aboveground biomass). Here, we report results from the 2020 growing season, after three years of treatment. Photosynthetic rates of C. drummondii and Andropogon gerardii, a dominant C4 grass, were lower in drought treatments at the end of the growing season. A. gerardii also exhibited higher photosynthetic rates in the 4-year burn watershed, but C. drummondii rates were not impacted by burn frequency. Predawn and midday leaf water potential for both species, as well as turgor loss point for C. drummondii, were lower in the 4-year burn treatment, indicating increased water stress. This trend was more pronounced in drought shelters for C. drummondii. These results indicate that three years of 50% precipitation reduction has resulted in modest impacts on water stress and gas exchange in both species. Long-term studies of co-existing grasses and shrubs are useful for informing management of woody encroachment during drought and help to identify whether multiple external pressures (drought and fire) are needed to reverse grassland-to-shrubland transitions in temperate mesic grasslands
Hydraulic Responses of Shrubs and Grasses to Fire Frequency and Drought in a Tallgrass Prairie Experiencing Bush Encroachment
The increase in abundance and density of woody plants in herbaceous ecosystems (i.e. bush encroachment) is occurring globally and is driven by reduced fire frequency, climate change, and the utilization of deeper, more reliable soil water by woody plants. Thus, a comprehensive understanding of the physiological processes through which woody and herbaceous plants use water will provide greater insight into the mechanisms of bush encroachment, as well as the trajectory of encroachment in a changing climate. Our objective was to assess how experimental changes in water availability and fire frequency impact belowground water-use traits in Cornus drummondii, the primary encroaching shrub within North American tallgrass prairies, and Andropogon gerardii, a dominant C4 grass. Shelters that reduced precipitation by 50% (drought) and 0% (control) were built over mature shrubs growing in sites that were burned at 1-year and 4-year frequencies. We assessed the water transport capability of shrubs and grasses growing in each treatment by measuring the maximum hydraulic conductance (Kmax) of entire root systems. We also assessed the vulnerability of shrub root segments to loss of hydraulic function by measuring the pressure at which 50% of the maximum hydraulic conductivity is lost (P50). Grass and shrub roots had opposite responses to drought and these patterns varied with fire treatment. Grasses growing in drought plots had lower root Kmax than control grasses. Conversely, root Kmax did not differ significantly between treatments in shrubs. However, drought shrub roots were less vulnerable to water stress than control roots (P50=-1.5 and -0.20 MPa, respectively). These results suggest that the ability of grass roots to use water declined with drought, while the ability of shrub roots to resist water stress increased with drought. Future work should investigate whether these drought responses are associated with altered root growth patterns
Response of a mixed grass prairie to an extreme precipitation event
Citation: Concilio, A. L., Prevey, J. S., Omasta, P., O'Connor, J., Nippert, J. B., & Seastedt, T. R. (2015). Response of a mixed grass prairie to an extreme precipitation event. Ecosphere, 6(10), 12. doi:10.1890/es15-00073.1Although much research has been conducted to measure vegetation response to directional shifts in climate change drivers, we know less about how plant communities will respond to extreme events. Here, we evaluate the response of a grassland community to an unprecedented 43 cm rainfall event that occurred in the Front Range of Colorado in September, 2013 using vegetation plots that had been monitored for response to simulated precipitation changes since 2011. This rain caused soils to stay at or above field capacity for multiple days, and much of the seed bank germinated following the early autumn event. Annual introduced grasses, especially cheatgrass (Bromus tectorum), and several introduced forbs demonstrated strong positive increases in cover the following growing season. Native cool season grasses and native forbs showed limited changes in absolute cover despite continued high soil water availability, while native warm season grasses increased in cover the following summer. Treatments that previously altered the amounts and seasonality of rainfall during the 2011-2013 interval showed legacy effects impacting cover responses of introduced species and warm-season native grasses. Resin bag estimates of inorganic nitrogen flux resulting from the event indicated twice as much nitrogen movement compared to any previous collections during the 2011-2013 interval. Nitrogen additions to a subset of plots made in spring of 2014 demonstrated that the relative cover of introduced species could be further increased with additional soil nitrogen. Collectively, these results support the contention that extreme precipitation events can favor species already benefiting from other environmental change drivers
Electronic excitations stabilized by a degenerate electron gas in semiconductors
Excitons in semiconductors and insulators consist of fermionic subsystems, electrons and holes, whose attractive interaction facilitates bound quasiparticles with quasi-bosonic character. In the presence of a degenerate electron gas, such excitons dissociate due to free carrier screening. Despite their absence, we found pronounced emission traces in the below-band-edge region of bulk, germanium-doped GaN up to a temperature of 100 K, mimicking sharp spectral features at high free electron concentrations (3.4E19–8.9E19 cm−3). Our interpretation of the data suggests that a degenerate, three-dimensional electron gas stabilizes a novel class of quasiparticles, which we name collexons. These many-particle complexes are formed by exchange of electrons with the Fermi gas. The potential observation of collexons and their stabilization with rising doping concentration is enabled by high crystal quality due to the almost ideal substitution of host atoms with dopants.DFG, 43659573, SFB 787: Semiconductor Nanophotonics: Materials, Models, Device
Phonon pressure coefficients and deformation potentials of wurtzite AlN determined by uniaxial pressure-dependent Raman measurements
© 2014 American Physical Society. We studied bulk crystals of wurtzite AlN by means of uniaxial pressure-dependent Raman measurements. As a result, we derive the phonon pressure coefficients and deformation potentials for all zone center optical phonon modes. For the A1 and E1 modes, we further experimentally determined the uniaxial pressure dependence of their longitudinal optical-transverse optical (LO-TO) splittings. Our experimental approach delivers new insight into the large variance among previously reported phonon deformation potentials, which are predominantly based on heteroepitaxial growth of AlN and the ball-on-ring technique. Additionally, the measured phonon pressure coefficients are compared to their theoretical counterparts obtained by density functional theory implemented in the siesta package. Generally, we observe a good agreement between the calculated and measured phonon pressure coefficients but some particular Raman modes exhibit significant discrepancies similar to the case of wurtzite GaN and ZnO, clearly motivating the presented uniaxial pressure-dependent Raman measurements on bulk AlN crystals
N and P constrain C in ecosystems under climate change: role of nutrient redistribution, accumulation, and stoichiometry
© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rastetter, E., Kwiatkowski, B., Kicklighter, D., Plotkin, A., Genet, H., Nippert, J., O’Keefe, K., Perakis, S., Porder, S., Roley, S., Ruess, R., Thompson, J., Wieder, W., Wilcox, K., & Yanai, R. N and P constrain C in ecosystems under climate change: role of nutrient redistribution, accumulation, and stoichiometry. Ecological Applications, (2022): e2684, https://doi.org/10.1002/eap.2684.We use the Multiple Element Limitation (MEL) model to examine responses of 12 ecosystems to elevated carbon dioxide (CO2), warming, and 20% decreases or increases in precipitation. Ecosystems respond synergistically to elevated CO2, warming, and decreased precipitation combined because higher water-use efficiency with elevated CO2 and higher fertility with warming compensate for responses to drought. Response to elevated CO2, warming, and increased precipitation combined is additive. We analyze changes in ecosystem carbon (C) based on four nitrogen (N) and four phosphorus (P) attribution factors: (1) changes in total ecosystem N and P, (2) changes in N and P distribution between vegetation and soil, (3) changes in vegetation C:N and C:P ratios, and (4) changes in soil C:N and C:P ratios. In the combined CO2 and climate change simulations, all ecosystems gain C. The contributions of these four attribution factors to changes in ecosystem C storage varies among ecosystems because of differences in the initial distributions of N and P between vegetation and soil and the openness of the ecosystem N and P cycles. The net transfer of N and P from soil to vegetation dominates the C response of forests. For tundra and grasslands, the C gain is also associated with increased soil C:N and C:P. In ecosystems with symbiotic N fixation, C gains resulted from N accumulation. Because of differences in N versus P cycle openness and the distribution of organic matter between vegetation and soil, changes in the N and P attribution factors do not always parallel one another. Differences among ecosystems in C-nutrient interactions and the amount of woody biomass interact to shape ecosystem C sequestration under simulated global change. We suggest that future studies quantify the openness of the N and P cycles and changes in the distribution of C, N, and P among ecosystem components, which currently limit understanding of nutrient effects on C sequestration and responses to elevated CO2 and climate change.This material is based on work supported by the National Science Foundation under Grant No. 1651722 as well through the NSF LTER Program 1637459, 2220863 (ARC), 1637686 (NWT), 1832042 (KBS), 2025849 (KNZ), 1636476 (BNZ), 1637685 (HBR), 1832210 (HFR), 2025755 (AND). We also acknowledge NSF grants 1637653 and 1754126 (INCyTE RCN), and DOE grant DESC0019037. We also acknowledge support through the USDA Forest Service Hubbard Brook Experimental Forest, North Woodstock, New Hampshie (USDA NIFA 2019-67019-29464) and Pacific Northwest Research Station, Corvallis, Oregon
Exploring the work–life challenges and dilemmas faced by managers and professionals who live alone
This article aims to question the dominant understanding of work–life balance or conflict as primarily a ‘work–family’ issue. It does this by exploring the experiences of managers and professionals who live alone and do not have children – a group of employees traditionally overlooked in work–life policy and research but, significantly, a group on the rise within the working age population. Semi-structured interviews with 36 solo-living managers and professionals were carried out in the UK, spanning a range of occupations. In addition to previously identified work–life issues, four themes emerged that were pressing for and specific to solo-living managers and professionals. These are articulated here as challenges and dilemmas relating to: assumptions about work and non-work time; the legitimacy of their work–life balance; lack of support connected to financial and emotional well-being; and work-based vulnerabilities
Tight coupling of leaf area index to canopy nitrogen and phosphorus across heterogeneous tallgrass prairie communities
Nitrogen (N) and phosphorus (P) are limiting nutrients for many plant communities worldwide. Foliar N and P along with leaf area are among the most important controls on photosynthesis and hence productivity. However, foliar N and P are typically assessed as species level traits, whereas productivity is often measured at the community scale. Here, we compared the community-level traits of leaf area index (LAI) to total foliar nitrogen (TFN) and total foliar phosphorus (TFP) across nearly three orders of magnitude LAI in grazed and ungrazed tallgrass prairie in north-eastern Kansas, USA. LAI was strongly correlated with both TFN and TFP across communities, and also within plant functional types (grass, forb, woody, and sedge) and grazing treatments (bison or cattle, and ungrazed). Across almost the entire range of LAI values and contrasting communities, TFN:TFP ratios indicated co-limitation by N and P in almost all communities; this may further indicate a community scale trend of an optimal N and P allocation per unit leaf area for growth. Previously, results from the arctic showed similar tight relationships between LAI:TFN, suggesting N is supplied to canopies to maximize photosynthesis per unit leaf area. This tight coupling between LAI, N, and P in tallgrass prairie suggests a process of optimal allocation of N and P, wherein LAI remains similarly constrained by N and P despite differences in species composition, grazing, and canopy density
- …