20 research outputs found
Application of a spring-dashpot system to clinical lung tumor motion data
A spring-dashpot system based on the Voigt model was developed to model the
correlation between abdominal respiratory motion and tumor motion during lung
radiotherapy. The model was applied to clinical data comprising 52 treatment
beams from 10 patients, treated on the Mitsubishi Real-Time Radiation Therapy
system, Sapporo, Japan. In Stage 1, model parameters were optimized for
individual patients and beams to determine reference values and to investigate
how well the model can describe the data. In Stage 2, for each patient the
optimal parameters determined for a single beam were applied to data from other
beams to investigate whether a beam-specific set of model parameters is
sufficient to model tumor motion over a course of treatment.
In Stage 1 the baseline root mean square (RMS) residual error for all
individually-optimized beam data was 0.90 plus or minus 0.40 mm. In Stage 2,
patient-specific model parameters based on a single beam were found to model
the tumor position closely, even for irregular beam data, with a mean increase
with respect to Stage 1 values in RMS error of 0.37 mm. On average the obtained
model output for the tumor position was 95% of the time within an absolute
bound of 2.0 mm and 2.6 mm in Stage 1 and 2, respectively.
The model was capable of dealing with baseline, amplitude and frequency
variations of the input data, as well as phase shifts between the input tumor
and output abdominal signals. These results indicate that it may be feasible to
collect patient-specific model parameters during or prior to the first
treatment, and then retain these for the rest of the treatment period. The
model has potential for clinical application during radiotherapy treatment of
lung tumors
Evaluation of the uncertainty in an EBT3 film dosimetry system utilizing net optical density
Radiochromic film has become an important tool to verify dose distributions for intensity-modulated radiotherapy (IMRT) and quality assurance (QA) procedures. A new radiochromic film model, EBT3, has recently become available, whose composition and thickness of the sensitive layer are the same as those of previous EBT2 films. However, a matte polyester layer was added to EBT3 to prevent the formation of Newton’s rings. Furthermore, the symmetrical design of EBT3 allows the user to eliminate side-orientation dependence. This film and the flatbed scanner, Epson Perfection V750, form a dosimetry system whose intrinsic characteristics were studied in this work. In addition, uncertainties associated with these intrinsic characteristics and the total uncertainty of the dosimetry system were determined. The analysis of the response of the radiochromic film (net optical density) and the fitting of the experimental data to a potential function yielded an uncertainty of 2.6%, 4.3%, and 4.1% for the red, green, and blue channels, respectively. In this work, the dosimetry system presents an uncertainty in resolving the dose of 1.8% for doses greater than 0.8 Gy and less than 6 Gy for red channel. The films irradiated between 0 and 120 Gy show differences in the response when scanned in portrait or landscape mode; less uncertainty was found when using the portrait mode. The response of the film depended on the position on the bed of the scanner, contributing an uncertainty of 2% for the red, 3% for the green, and 4.5% for the blue when placing the film around the center of the bed of scanner. Furthermore, the uniformity and reproducibility radiochromic film and reproducibility of the response of the scanner contribute less than 1% to the overall uncertainty in dose. Finally, the total dose uncertainty was 3.2%, 4.9%, and 5.2% for red, green, and blue channels, respectively. The above uncertainty values were obtained by minimizing the contribution to the total dose uncertainty of the film orientation and film homogeneity
Review of hypofractionated small volume radiotherapy for early-stage non-small cell lung cancer.
A review of the technical aspects of high-dose hypofractionated radiotherapy for localised non-small cell lung cancer was carried out to allow correlation with outcome measures and with a consensus view of the technique. A Pubmed search carried out between January 2001 and April 2007 identified 15 studies for inclusion. The clinical and technical aspects of treatment were extracted and their effect on survival, progression-free survival and toxicity were assessed using the summary statistic of weighted means. A comparison was made with the RTOG 0236 consensus study protocol. The range of variables in the studies precluded correlation of outcome with tumour parameters, dose fractionation and technical aspects such as immobilisation, techniques dealing with breathing motion, beam number and arrangement and organ at risk dose constraints. Robust data to justify a consensus view were not found, which suggests that further studies are required. They should focus on developing the treatment technique of stereotactic body radiation therapy for early-stage non-small cell lung cancer and correlating it with outcome to provide a rational basis for future randomised trials, comparing the technique with conformal radiotherapy and surgery, and the introduction of the technique into routine clinical practice