463 research outputs found

    Effect of within-species plant genotype mixing on habitat preference of a polyphagous insect predator

    Get PDF
    The effects of within-species plant genotype mixing on the habitat preference of a polyphagous ladybird were studied. Plant species diversity is often claimed to positively affect habitat preferences of insect predators, but the effects of within-species genotype diversity have not been extensively studied. In a field experiment with different barley (Hordeum vulgare) genotypes in mixed and pure stands, adult seven-spot ladybird Coccinella septempunctata, a polyphagous predator, preferred a specific combination of genotypes over the single genotypes alone before aphids had arrived in the crop, and again when aphids were emigrating. In laboratory experiments on adult ladybird orientation to odour from barley, ladybirds were attracted/arrested by the mixed odour of the same barley genotype mixture that was preferred in the field. Exposure of one barley genotype to volatiles from the other also caused the odour of the exposed plants to become more attractive to ladybirds. The results support the hypothesis that plant volatiles may attract or arrest foraging adult ladybirds, contributing to the selection of favourable habitats, and they show that within-species plant genotype mixing can shape interactions within multitrophic communities

    The HARE chip for efficient time-resolved serial synchrotron crystallography

    No full text
    Serial synchrotron crystallography (SSX) is an emerging technique for static and time-resolved protein structure determination. Using specifically patterned silicon chips for sample delivery, the `hit-and-return' (HARE) protocol allows for efficient time-resolved data collection. The specific pattern of the crystal wells in the HARE chip provides direct access to many discrete time points. HARE chips allow for optical excitation as well as on-chip mixing for reaction initiation, making a large number of protein systems amenable to time-resolved studies. Loading of protein microcrystals onto the HARE chip is streamlined by a novel vacuum loading platform that allows fine-tuning of suction strength while maintaining a humid environment to prevent crystal dehydration. To enable the widespread use of time-resolved serial synchrotron crystallography (TR-SSX), detailed technical descriptions of a set of accessories that facilitate TR-SSX workflows are provided

    Influence of Annealing on the Optical and Scintillation Properties of CaWO4_4 Single Crystals

    Full text link
    We investigate the influence of oxygen annealing on the room temperature optical and scintillation properties of CaWO4_4 single crystals that are being produced for direct Dark Matter search experiments. The applied annealing procedure reduces the absorption coefficient at the peak position of the scintillation spectrum (āˆ¼430\sim430 nm) by a factor of āˆ¼6\sim6 and leads to an even larger reduction of the scattering coefficient. Furthermore, the annealing has no significant influence on the \emph{intrinsic} light yield. An additional absorption occurring at āˆ¼400\sim400 nm suggests the formation of Oāˆ’^- hole centers. Light-yield measurements at room temperature where one crystal surface was mechanically roughened showed an increase of the \emph{measured} light yield by āˆ¼40\sim40 % and an improvement of the energy resolution at 59.5 keV by āˆ¼12\sim12 % for the annealed crystal. We ascribe this result to the reduction of the absorption coefficient while the surface roughening is needed to compensate for the also observed reduction of the scattering coefficient after annealing
    • ā€¦
    corecore