28 research outputs found

    Giant tidal tails of helium escaping the hot Jupiter HAT-P-32 b

    No full text
    Capturing planets in the act of losing their atmospheres provides rare opportunities to probe their evolution history. This analysis has been enabled by observations of the helium triplet at 10,833 angstrom, but past studies have focused on the narrow time window right around the planet's optical transit. We monitored the hot Jupiter HAT-P-32 b using high-resolution spectroscopy from the Hobby-Eberly Telescope covering the planet's full orbit. We detected helium escaping HAT-P-32 b at a 14σ significance,with extended leading and trailing tails spanning a projected length over 53 times the planet's radius. These tails are among the largest known structures associated with an exoplanet. We interpret our observations using three-dimensional hydrodynamic simulations, which predict Roche Lobe overflow with extended tails along the planet's orbital path.ISSN:2375-254

    A harsh test of far-field scrambling with the habitable-zone planet finder and the hobby–eberly telescope

    No full text
    The Habitable-zone Planet Finder (HPF) is a fiber-fed precise radial velocity (RV) spectrograph at the 10 m Hobby–Eberly Telescope (HET). Due to its fixed-altitude design, the HET pupil changes appreciably across a track, leading to significant changes of the fiber far-field illumination. HPF’s fiber scrambler is designed to suppress the impact of these illumination changes on the RVs—but the residual impact on the RV measurements has yet to be probed on-sky. We use GJ 411, a bright early type (M2) M dwarf to probe the effects of far-field input trends due to these pupil variations on HPF RVs. These large changes (∌2x) in the pupil area and centroid present a harsh test of HPF’s far-field scrambling. Our results show that the RVs are effectively decoupled from these extreme far-field input changes due to pupil centroid offsets, attesting to the effectiveness of the scrambler design. This experiment allows us to test the impact of these changes with large pupil variation on-sky, something we would not easily be able to do at a conventional optical telescope. While the pupil and illumination changes expected at these other telescopes are small, scaling from our results enables us to estimate and bound these effects, and show that they are controllable even for the new and next generation of RV instruments in their quest to beat down instrumental noise sources toward the goal of a few cm s-1. © 2021. The American Astronomical Society. All rights reserved.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore