707 research outputs found

    Little Fish Are Less Likely to Take the Bait

    Get PDF

    Ètica de la publicació científica

    Get PDF

    Combined Electric and Magnetic Aharonov-Bohm Effects

    Full text link
    It is well-known that the electric and magnetic Aharonov-Bohm effects may be formally described on equal footing using the four-vector potential in a relativistic framework. We propose an illustrative manifestation of both effects in a single configuration, in which the specific path of the charged particle determines the weight of the electric and magnetic acquired relative phases. The phases can be distinctively obtained in the Coulomb gauge. The scheme manifests the pedagogical lesson that though each of the relative phases is gauge-dependent their sum is gauge-invariant.Comment: 6 figure

    Entanglement of Solitons in the Frenkel-Kontorova Model

    Full text link
    We investigate entanglement of solitons in the continuum-limit of the nonlinear Frenkel-Kontorova chain. We find that the entanglement of solitons manifests particle-like behavior as they are characterized by localization of entanglement. The von-Neumann entropy of solitons mixes critical with noncritical behaviors. Inside the core of the soliton the logarithmic increase of the entropy is faster than the universal increase of a critical field, whereas outside the core the entropy decreases and saturates the constant value of the corresponding massive noncritical field. In addition, two solitons manifest long-range entanglement that decreases with the separation of the solitons more slowly than the universal decrease of the critical field. Interestingly, in the noncritical regime of the Frenkel-Kontorova model, entanglement can even increase with the separation of the solitons. We show that most of the entanglement of the so-called internal modes of the solitons is saturated by local degrees of freedom inside the core, and therefore we suggest using the internal modes as carriers of quantum information.Comment: 16 pages, 22 figure

    Critical and noncritical long range entanglement in the Klein-Gordon field

    Full text link
    We investigate the entanglement between two separated segments in the vacuum state of a free 1D Klein-Gordon field, where explicit computations are performed in the continuum limit of the linear harmonic chain. We show that the entanglement, which we measure by the logarithmic negativity, is finite with no further need for renormalization. We find that the quantum correlations decay much faster than the classical correlations as in the critical limit long range entanglement decays exponentially for separations larger than the size of the segments. As the segments become closer to each other the entanglement diverges as a power law. The noncritical regime manifests richer behavior, as the entanglement depends both on the size of the segments and on their separation. In correspondence with the von Neumann entropy long-range entanglement also distinguishes critical from noncritical systems

    Quantum Mechanical Realization of a Popescu-Rohrlich Box

    Full text link
    We consider quantum ensembles which are determined by pre- and post-selection. Unlike the case of only pre-selected ensembles, we show that in this case the probabilities for measurement outcomes at intermediate times satisfy causality only rarely; such ensembles can in general be used to signal between causally disconnected regions. We show that under restrictive conditions, there are certain non-trivial bi-partite ensembles which do satisfy causality. These ensembles give rise to a violation of the CHSH inequality, which exceeds the maximal quantum violation given by Tsirelson's bound, BCHSH≤22B_{\rm CHSH}\le 2\sqrt2, and obtains the Popescu-Rohrlich bound for the maximal violation, BCHSH≤4B_{\rm CHSH}\le 4. This may be regarded as an a posteriori realization of super-correlations, which have recently been termed Popescu-Rohrlich boxes.Comment: 5 page
    • …
    corecore