8 research outputs found
Liability of a Surgeon for the Extension of an Authorized Operation
Polyunsaturated fatty acids modulate the voltage dependence of several voltage-gated ion channels, thereby being potent modifiers of cellular excitability. Detailed knowledge of this molecular mechanism can be used in designing a new class of small-molecule compounds against hyperexcitability diseases. Here, we show that arginines on one side of the helical K-channel voltage sensor S4 increased the sensitivity to docosahexaenoic acid (DHA), whereas arginines on the opposing side decreased this sensitivity. Glutamates had opposite effects. In addition, a positively charged DHA-like molecule, arachidonyl amine, had opposite effects to the negatively charged DHA. This suggests that S4 rotates to open the channel and that DHA electrostatically affects this rotation. A channel with arginines in positions 356, 359, and 362 was extremely sensitive to DHA: 70 mu M DHA at pH 9.0 increased the current greater than500 times at negative voltages compared with wild type (WT). The small-molecule compound pimaric acid, a novel Shaker channel opener, opened the WT channel. The 356R/359R/362R channel drastically increased this effect, suggesting it to be instrumental in future drug screening
Atom-by-atom tuning of the electrostatic potassium-channel modulator dehydroabietic acid
Dehydroabietic acid (DHAA) is a naturally occurring component of pine resin that was recently shown to open voltage-gated potassium (KV) channels. The hydrophobic part of DHAA anchors the compound near the channel’s positively charged voltage sensor in a pocket between the channel and the lipid membrane. The negatively charged carboxyl group exerts an electrostatic effect on the channel’s voltage sensor, leading to the channel opening. In this study, we show that the channel-opening effect increases as the length of the carboxyl-group stalk is extended until a critical length of three atoms is reached. Longer stalks render the compounds noneffective. This critical distance is consistent with a simple electrostatic model in which the charge location depends on the stalk length. By combining an effective anchor with the optimal stalk length, we create a compound that opens the human KV7.2/7.3 (M type) potassium channel at a concentration of 1 µM. These results suggest that a stalk between the anchor and the effector group is a powerful way of increasing the potency of a channel-opening drug.Funding agencies: Swedish Research Council [2016-02615]; Swedish Heart-Lung Foundation [20150672]; Swedish Brain Foundation [2016-0326]</p
Design, synthesis, and in vitro biological evaluation of meta-sulfonamidobenzamide-based antibacterial LpxH inhibitors
New antibacterial compounds are urgently needed, especially for infections caused by the top-priority Gram-negative bacteria that are increasingly difficult to treat. Lipid A is a key component of the Gram-negative outer membrane and the LpxH enzyme plays an important role in its biosynthesis, making it a promising antibacterial target. Inspired by previously reported ortho-N-methyl-sulfonamidobenzamide-based LpxH inhibitors, novel benzamide substitutions were explored in this work to assess their in vitro activity. Our findings reveal that maintaining wild-type antibacterial activity necessitates removal of the N-methyl group when shifting the ortho-N-methyl-sulfonamide to the meta-position. This discovery led to the synthesis of meta-sulfonamidobenzamide analogs with potent antibacterial activity and enzyme inhibition. Moreover, we demonstrate that modifying the benzamide scaffold can alter blocking of the cardiac voltage-gated potassium ion channel hERG. Furthermore, two LpxH-bound X-ray structures show how the enzyme-ligand interactions of the meta-sulfonamidobenzamide analogs differ from those of the previously reported ortho analogs. Overall, our study has identified meta-sulfonamidobenzamide derivatives as promising LpxH inhibitors with the potential for optimization in future antibacterial hit-to-lead programs.De två sista författarna delar sistaförfattarskapetAuthors in the list of papers of Andrea Benediktsdóttir's thesis: Benediktsdottir A., Sooriyaarachchi S., Cao S., Ottosson N. E., Lindström S., Daina L., Bobileva O., Loza E., Hughes D., Jones A., Mowbray L. S., Zamaratski E., Sandström A., Karlén A.</p
Governance strategy and costs : board compensation in Sweden
Shareholders are not identical, but differ in their objectives and actions. One difference is the level of delegation of the principal functions to the board, which we suggest can be observed through the level of directors’ compensation. We analyze the difference in board compensation through the concept of governance strategy and suggest two distinct categories of shareholder strategies: the company governance strategy and the financial governance strategy. These strategies create different distributions of governance costs, which we separate into principal costs and agency costs. We claim that the financial governance strategy adopts a higher level of delegation, which implies that the principal costs are assumed by the corporation and that agency costs are higher. This in turn can explain the higher compensation for the directors of the board compared to compensation under the company governance strategy. We test our hypothesis using a three-year panel of Swedish listed corporations and find that shareholders pursuing a financial governance strategy are associated with higher levels of board compensation. These findings suggest the existence of differences in governance strategies, reflected in governance costs through board compensation, among different types of shareholders in a corporation