79 research outputs found

    A Community-Based Participatory Research Approach to Developing the Harvest for Healthy Kids Curriculum

    Get PDF
    Background: A diet rich in fruits and vegetables is associated with reduced risk of diet-related chronic diseases. However, fewer than half of children in the United States consume the recommended amount. Objectives: This article describes the community-based participatory research (CBPR) process used to develop the Harvest for Healthy Kids curriculum. Methods: Harvest for Healthy Kids is a intervention research project designed to increase access to and intake of fruits and vegetables among preschoolers enrolled in Head Start. The curriculum is composed of eight kits, each focusing on a different fruit or vegetable. Results: The Harvest for Healthy Kids curriculum was developed through an iterative process in which Head Start teachers were highly involved. The final product reflects the teachers’ experiences using the curriculum and their suggestions for improving. Conclusions: The CBPR process used to develop the Harvest for Healthy Kids curriculum led to a product that is grounded in theory and practice

    Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As a major component of plant cell wall, lignin plays important roles in mechanical support, water transport, and stress responses. As the main cause for the recalcitrance of plant cell wall, lignin modification has been a major task for bioenergy feedstock improvement. The study of the evolution and function of lignin biosynthesis genes thus has two-fold implications. First, the lignin biosynthesis pathway provides an excellent model to study the coordinative evolution of a biochemical pathway in plants. Second, understanding the function and evolution of lignin biosynthesis genes will guide us to develop better strategies for bioenergy feedstock improvement.</p> <p>Results</p> <p>We analyzed lignin biosynthesis genes from fourteen plant species and one symbiotic fungal species. Comprehensive comparative genome analysis was carried out to study the distribution, relatedness, and family expansion of the lignin biosynthesis genes across the plant kingdom. In addition, we also analyzed the comparative synteny map between rice and sorghum to study the evolution of lignin biosynthesis genes within the <it>Poaceae </it>family and the chromosome evolution between the two species. Comprehensive lignin biosynthesis gene expression analysis was performed in rice, poplar and <it>Arabidopsis</it>. The representative data from rice indicates that different fates of gene duplications exist for lignin biosynthesis genes. In addition, we also carried out the biomass composition analysis of nine <it>Arabidopsis </it>mutants with both MBMS analysis and traditional wet chemistry methods. The results were analyzed together with the genomics analysis.</p> <p>Conclusion</p> <p>The research revealed that, among the species analyzed, the complete lignin biosynthesis pathway first appeared in moss; the pathway is absent in green algae. The expansion of lignin biosynthesis gene families correlates with substrate diversity. In addition, we found that the expansion of the gene families mostly occurred after the divergence of monocots and dicots, with the exception of the C4H gene family. Gene expression analysis revealed different fates of gene duplications, largely confirming plants are tolerant to gene dosage effects. The rapid expansion of lignin biosynthesis genes indicated that the translation of transgenic lignin modification strategies from model species to bioenergy feedstock might only be successful between the closely relevant species within the same family.</p

    Genomic reconstruction of the SARS-CoV-2 epidemic in England.

    Get PDF
    The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021
    corecore