UCRL-CONF-220859

Distribution of 99Tc and 129I in the Vicinity of Underground Nuclear Tests at the Nevada Test Site

P. Zhao, Q. Hu, T. P. Rose, G. J. Nimz, M. Zavarin

April 25, 2006

Methods & Applications of Radioanalytical Chemistry-VII Kailua-Kona, HI, United States April 3, 2006 through April 7, 2006

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

Distribution of ⁹⁹Tc and ¹²⁹I in the Vicinity of

Underground Nuclear Tests at the Nevada Test Site

P. Zhao, Q. Hu, T.P. Rose, G.J. Nimz, M. Zavarin

Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550

ABSTRACT

⁹⁹Tc and ¹²⁹I are important contributors to risk assessment due to their long halflives and high mobility as aqueous anionic species. We analyzed ⁹⁹Tc and ¹²⁹I in groundwater samples in and near 11 underground nuclear tests and in melt glass and rock samples retrieved from the Chancellor test cavity, Nevada Test Site. The ¹²⁹I/¹²⁷I ratio ranges from 10⁻³ to 10⁻⁶ in cavity water and 10⁻⁴ to 10⁻⁹ in satellite wells. The ⁹⁹Tc concentration ranges from 3 to 10^{-4} Bg/L in cavity waters and from 0.3 to 10^{-4} Bg/L in satellite wells. Downstream migration is apparent for both radionuclides. However, it is affected by both retardation and initial distribution. In-situ ⁹⁹Tc and ¹²⁹I K_ds calculated using rubble and water concentrations are 3 to 22 mL/g and 0 to 0.12 mL/g, respectively and are suggestive of mildly reducing conditions. ¹²⁹I distribution in the melt glass, rubble and groundwater of the Chancellor test cavity is 28%, 24% and 48%, respectively; for ⁹⁹Tc, it is 65%, 35% and 0.3%, respectively. Our partitioning estimates differ from those of underground tests in French Polynesia, implying that fission product distribution may vary from test to test. Factors that may influence this distribution include geologic conditions (e.g. lithology, water and CO₂ content) and the cooling history of the test cavity.

INTRODUCTION

⁹⁹Tc and ¹²⁹I are actinide fission products with long half-lives $(2.15 \times 10^5 \text{ years})$ and $1.57 \times 10^7 \text{ years}$, respectively), both of which occur as high-solubility anionic species in groundwater. Due to their weak sorption characteristics, both ⁹⁹Tc and ¹²⁹I have a high potential for migration in the subsurface environment.

At underground nuclear testing sites, the migration of ⁹⁹Tc and ¹²⁹I in groundwater is influenced by the initial distribution of these radionuclides in nuclear test debris. Unfortunately, very little information is available on this initial distribution. Our current understanding of ⁹⁹Tc and ¹²⁹I distribution within the test cavity-chimney is based primarily on IAEA experience from French underground tests in French Polynesia¹. Based on both physical and chemical characteristics, the fraction of ⁹⁹Tc and ¹²⁹I incorporated into melt glass from an underground nuclear test was estimated to be 80% and 50%, respectively.

The main objectives of this investigation were to: (1) measure the ⁹⁹Tc and ¹²⁹I concentrations in melt glass and rubble samples from an underground test cavity, and use the results to empirically assess the IAEA partitioning estimates; (2) measure ⁹⁹Tc and ¹²⁹I in groundwater samples from a number of NTS near-field wells; and (3) compare groundwater and test debris data to determine water-rock partitioning (K_d).

EXPERIMENTAL

Sample Preparation

Technetium Analyses. For groundwater samples, we used TEVA resin columns to enrich and separate ⁹⁹Tc from interfering elements². Depending on the ⁹⁹Tc

concentration, sample volumes of 10 mL to 2 liters were used. For melt glass and rock samples, a fusion method^{3,4} was used wherein a powdered sample was reacted sodium peroxide and low carbonate sodium hydroxide at 700 °C for 30 minutes. This method is effective in fusing all rock-forming minerals while minimizing Tc volatilization (and hence potential loss) during the digestion process. The fusion cake was then dissolved in nitric acid and a TEVA column was used to separate and purify the ⁹⁹Tc. A modified isotope dilution ICP-MS method was used for ⁹⁹Tc analyses. We used NIST SRM-4288A and an aqueous solution of 32.61 ± 0.37 kBq/g ⁹⁹Tc(VII) in 1×10^{-3} M KOH as ⁹⁹Tc reference standards. Stable rhenium was spiked in each sample (both groundwater and solid) as a tracer to monitor rhenium and, by analogy, ⁹⁹Tc recovery.

Iodine Analyses. NTS groundwater samples are normally in the neutral to slightly alkaline pH range and were directly analyzed for stable iodine after spiking with 5 μ g/L of internal standard (rhodium, Rh) in 1% CFA-C. The CFA-C is a surfactant that coats the glassware and reduces the memory effect of iodine in the ICP-MS introduction system⁵. Groundwater samples were prepared for ¹²⁹I analysis on the Accelerator Mass Spectrometer (AMS) using standard methods reported in the literature⁶.

A microwave sample preparation system was used to digest and extract iodine from melt glass and rock samples. 4 mL of 5% tetra-methyl ammonium hydroxide (TMAH) solution was added to 0.5-1g of powdered sample in a Teflon vessel for the microwave digestion⁷⁻⁹. The power level and time for each digestion stage were programmed to reach a maximum value of 800 W over 15 minutes, and held there for an additional 10 minutes. To minimize potential iodine loss, the maximum temperature and pressure was not allowed to exceed 90 °C and 1241 kPa, respectively. After digestion, 6 mL of 1% CFA-C was added to the sample vessel. The total iodine in the supernatant was analyzed directly by ICP-MS. The ¹²⁹I targets were made using a stable ¹²⁷I carrier containing low ¹²⁹I to form AgI solid¹⁰; the ¹²⁹I/¹²⁷I ratio was measured by AMS.

RESULTS AND DISCUSSION

Results of Groundwater Samples

A total of 24 groundwater samples from 13 sampling sites were analyzed for ⁹⁹Tc and ¹²⁹I. Table 1 presents the measured ⁹⁹Tc concentrations in NTS groundwater samples using the ICP-MS method. For comparison, data from independent AMS¹¹ and liquid scintillation counting (LSC; this study) measurements of the same samples are also included. Measurement uncertainties reported in Table 1 are calculated from replicate analyses. The instrumental uncertainties for ⁹⁹Tc and ¹²⁹I analyses are <2% by ICP-MS measurements and 2-4% for ¹²⁹I/¹²⁷I ratio measurements by AMS. However, the error propagation in overall procedures for groundwater samples is between 5-10%. Table 1 also includes an Irish Sea Water sample as a reference standard¹¹. Our measured ⁹⁹Tc value for the reference standard is in good agreement with the accepted value (0.22 \pm 0.01 Bq/L).

In general, cavity water samples contained higher concentrations of ⁹⁹Tc compared to near-field satellite wells. The highest values were observed in well U-3cn PS2a (the Bilby test), with 3.1 Bq/L in 2001 and 2.3 Bq/L 2004. Only three NTS near-field wells have produced water with ⁹⁹Tc activities above 1 Bq/L. Concentrations lower than 0.3 mBq/L ⁹⁹Tc were found in near-field satellite monitoring wells. Downstream migration of ⁹⁹Tc is apparent. However, local geochemical conditions, such as reducing

conditions (sometimes encountered in test cavities) may be limiting ⁹⁹Tc migration from the test cavity.

Using Re to trace extraction efficiency, the ⁹⁹Tc concentration in U-19ad PS1A groundwater (Chancellor test) was measured to be 1.70 ± 0.01 Bq/L. This value was confirmed by an independent set of standard addition measurements. Using a TEVA column for pre-concentration and purification of 1-liter water samples, ICP-MS can provide a ⁹⁹Tc method detection limit (MDL) of 0.13 mBq/L. This is about one order of magnitude higher than that achieved by AMS, which has a reported MDL of 0.01 mBq or 1×10^8 atoms with 15-25% error for a 1-liter sample volume¹¹. The LSC detection limit is ~37 mBq/L.

The total stable ¹²⁷I concentrations, ¹²⁹I/¹²⁷I ratios, and corresponding ¹²⁹I activities in NTS groundwaters are also reported in Table 1. The ratio of ¹²⁹I/¹²⁷I in cavity and satellite well samples range from 10⁻³ to 10⁻⁶ and 10⁻⁴ to 10⁻⁹, respectively. The ¹²⁹I/¹²⁷I ratio of uncontaminated environmental samples is $\leq 10^{-13}$. The results suggest that ¹²⁹I is migrating at a rate similar to ⁹⁹Tc.

Results of Solid Samples

Melt glass and rubble samples were recovered from the Chancellor (U-19ad) underground test cavity during a drilling operation in 2004. Figure 1 shows the spatial distribution of samples collected from the test cavity. Samples were chosen over a wide depth interval (~130 meters). Table 2 lists the measured ⁹⁹Tc, total iodine, and ¹²⁹I/¹²⁷I ratios in the test debris samples. The uncertainties in measurements of ⁹⁹Tc and ¹²⁹I/¹²⁷I ratios for the solid samples are similar to if not smaller than those for the water samples. We obtained >95% chemical recovery of total iodine from three IAEA/SRM soil samples

using the microwave digestion /TMAH extraction method. However, iodine recovery in melt glass samples may be lower due to the difference in sample matrix (soil vs. melt glass). We are currently assessing the quartz tube combustion method reported by MURAMATSU and WEDEPOHL¹² for total iodine measurement in rock samples.

⁹⁹Tc concentrations correlate with sample type. ⁹⁹Tc in the dark melt glass exhibits a fairly uniform distribution, with a narrow range of 600–750 ng/kg. The nonmelted volcanic rock contains <100 ng/kg ⁹⁹Tc. The ¹²⁹I activities in the solid samples range from 0.006 to 83 mBq/kg with highest concentrations found in the dark melt glass samples. The two samples (CH01a and b) that have very low ¹²⁹I activities also have the lowest ⁹⁹Tc concentrations of all samples.

Radionuclide Distribution in a Test Cavity

Based on the announced yield of the Chancellor test (143 kt of TNT equivalent)¹³, the depth of burial, and the bulk density of the overlying rock, we estimate the test cavity radius¹⁴ and generated mass of melt glass¹⁵ to be 61 m and $\sim 1.43 \times 10^8$ kg, respectively. Assuming a density of 2.5 g/cm³ and porosity of 30% for the melt glass and test debris, we can estimate the volume of melt glass and rubble in the cavity. The volume of groundwater in the cavity can be calculated assuming the saturated zone porosity is fully saturated and unsaturated zone is only 50% saturated. The results are reported in Table 3.

Using the measured ⁹⁹Tc and ¹²⁹I concentrations in the melt glass, rubble, and groundwater, the partitioning of ⁹⁹Tc and ¹²⁹I can be estimated (Table 3) and compared with IAEA estimates¹. Approximately 65% of the ⁹⁹Tc is associated with the melt glass, and 35% is associated with the rubble. Our estimate agrees with IAEA values to within $\pm 15\%$. Only a very small proportion of ⁹⁹Tc (0.3%) was dissolved in the cavity water,

which is expected given its strong sorption and under moderately reducing conditions¹⁶. Based on rubble and water concentrations, we estimate the ⁹⁹Tc K_d to be between 3 and 22 mL/g. Both Eh and iodine speciation measurements support the conclusion that the groundwater was reducing.

Using the same approach for ¹²⁹I, we estimate 28%, 24% and 48% of ¹²⁹I is in the melt glass, rubble and groundwater phases, respectively. Compared with IAEA estimates¹, our results show that a larger fraction of the ¹²⁹I is present in groundwater, and a lower fraction is contained in the glass and rubble. Given the high volatility of iodine and its mass 129 fission product precursors, together with the solubility of iodine in groundwater, the high fraction of ¹²⁹I in the cavity fluid would appear to be reasonable. Based on rubble and water concentrations, we estimate the ¹²⁹I K_d to be between 0 and 0.12 mL/g. However, ¹²⁹I was measured in only a few rubble samples, and our procedure lacked an iodine tracer to monitor recovery. Incomplete recovery of ¹²⁹I from solid samples would lead to an overestimation of ¹²⁹I partitioning into the groundwater phase and an underestimation of K_d. Quartz-tube combustion experiments for measuring low-level total iodine in rock samples are underway and will be used to compare with TMAH microwave digestion results described here.

While the partitioning estimates developed during this study are approximate, it is notable that the values differ from those reported by the IAEA for French underground tests¹. To some extent, these differences may reflect variations in the underground test conditions. For example, the type of geologic media and the water or CO_2 content of the rock can influence the amount of time that the cavity stands prior to collapse of the overlying rock. Cavity collapse results in the rapid cooling of the system, and disrupts

communication between the vapor phase and melt. The timing of this 'quenching' event has a significant effect on the fission product distribution because the partitioning of these fission products is largely determined by the chemical behavior of fission chain precursor elements¹⁷.

For example, most of the mass 99 and 129 fission chains are 'born' as short-lived precursors that decay to ⁹⁹Tc and ¹²⁹I on relatively short-time scales (half-lives of seconds to days). The chemical properties of these precursor elements will determine how the mass 99 and 129 species are distributed between the melt and vapor phases at the time of cavity collapse. Since each precursor species decays on a different time-scale, test cavities that are 'quenched' soon after the detonation will have a different fission product distribution than those that stand for a longer period of time. The future evaluation of radionuclide partitioning in underground test cavities that represent diverse cooling histories would provide additional constraints on the range in partitioning behavior.

CONCLUSIONS

⁹⁹Tc and ¹²⁹I in groundwater samples from 13 wells and in test debris from the Chancellor underground nuclear test cavity were analyzed using ICP-MS, LSC and AMS. In general, concentrations in the satellite wells are lower than in the test cavities for both ⁹⁹Tc and ¹²⁹I. Interestingly, ⁹⁹Tc and ¹²⁹I K_ds calculated using rubble and water concentrations are 3 to 22 mL/g and 0 to 0.12 mL/g, respectively and are suggestive of mildly reducing conditions. Though both radionuclides appear to be relatively mobile, ⁹⁹Tc is likely to be retarded as a results of its reduction from the TcO₄⁻ anion to the more sorbing and insoluble TcO₂ species. Using the analytical results of the water and test

debris samples, we have estimated the distribution of ⁹⁹Tc and ¹²⁹I between the melt glass, rubble and groundwater phases in the Chancellor test cavity and compared them to reported values from underground tests in French Polynesia. Differences in the two sets of partitioning values may be affected by analytical uncertainties, but variations in geologic conditions and the cooling history of a test cavity are expected to play an important role in determining the observed partitioning of fission products.

ACKNOWLEDGMENTS

This work was funded by the Underground Test Area Project, U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract W-7405-Eng-48.

REFERENCES

- IAEA, The Radiological Situation at the Atolls of Mururoa and Fangataufa-Inventory of RAdionuclides underground at the Atolls, International Atomic Energy Agency Report IAEA-MFTR-3, Vienna, 1998.
- EICHROM TECHNOLOGIES, Technetium-99 in Water. Analytical Procedures, Procedure Number TCW01, 2002.
- P. DIXON, D. B. CURTIS, J. MUSGRAVE, F. ROENSCH, J. ROACH, D. ROKOP, Anal. Chem., 69 (1997) 1692.
- ASTM, Standard Guide for the Determination of Technetium-99 in Soil. ASTM International, West Conshohocken, PA, 2005.

- 5. J. L. MAS, K. TAGAMI AND S. UCHIDA, Analytica Chimica Acta, 509 (2004) 83.
- J.E. MORAN, U. FEHN, J.S. HANOR, Geochimica et Cosmochimica Acta, 59 (1995) 5055-5069.
- T. UCHIDA, H. ISOYAMA, K. YAMADA, K. OGUCHI, G. NAKAGAWA, H. SUGIE, C. IIDA, Analytica Chimica Acta, 256 (1992) 277.
- 8. C. Y. ZHOU, M. K. WANG, L. L. KOH, Y. C. WEEB, Talanta, 43 (1996) 1061.
- H. YAMADA, T. KIRIYAMA, Y. ONAGAWA, I. HISAMORI, C. MIYAZAKI, K.
 K. YONEBAYASHI, Soil Sci. Plant Nutri., 45 (1999) 563.
- A. A. MARCHETTI, F. GU, R. ROBL, T. STRAUME, Nucl.Instrum. Meth.B, 123 (1997) 352.
- B. A. BERGQUIST, A. A. MARCHETTI, R. E. MARTINELLI, J. E. MCANINCH,
 G. J. NIMZ, I. D. PROCTOR, J. R. SOUTHON, J. S. VOGEl, Nucl. Instrum. Meth.
 B, 172 (2000) 328.
- 12. Y. MURAMATSU, K. H. WEDEPOHL, Chem. Geol., 147 (1998) 201.
- DOE/NV, United States Nuclear Tests, July 1945 through September 1992. U.S.
 Department of Energy, Nevada Operations Office, Las Vegas. DOE/NV-209 (Rev. 15) 2000.
- 14. G. A. PAWLOSKI, Development of Phenomenological Models of Underground Nuclear Tests on Pahute Mesa, Nevada Test Site - BENHAM and TYBO, Lawrence Livermore National Laboratory Report, UCRL-ID-136003, 1999.

- 15. C. W. OLSEN, Site Selection and Containment Evaluation for LLNL Nuclear Events. Proceedings of the Seventh Symposium on Containment of Underground Nuclear Explosions , vol 1, 1993, p.85-119.
- 16. K. H. LIESER, CH. BAUSCHER, Radiochimica Acta, 42 (1987) 205.
- K. J. MOODY, Underground Chemistry and the Uncertainty of the Yields of Nuclear Devices, Lawrence Livermore National Laboratory Report, UCRL-TR-200852, 2003.
- A. B. Kersting, W. D. Efurd, D.L. Finnegan, D. J. Rokop, D. K. Smith, and J. L. Thompson, Nature, 397 (1999) 56.

Test Name	Sampling Well / Location	Sampling Date	⁹⁹ Tc (ICP-MS) (Bq/L)	⁹⁹ Tc (other methods) (Bq/L)	Total lodine (μg/L)	¹²⁹ / ¹²⁷	¹²⁹ l (mBq/L)
Aleman	UE-3e #4; 58 m from working point	09/23/1998	0.32 ± 0.01	0.48 ± 0.01 ^a	11.3	n.a.	
Almendro	LI 10y DS1de: Covity/ohimpoy	08/18/1999	2.8E-03	n.a.	7.4	1.06E-03	53
	0-19v F3 fus, Cavity/chinnley	07/23/2003	4.1E-04	n.a.	10.1	1.41E-03	95
Bilby	U-3cn PS2; Chimney	12/18/2001	3.06 ± 0.03	2.96 ^b	9.1	9.74E-05	5.9
		12/09/2004	2.32 ± 0.23	2.50 ± 0.07 ^b	9.5	1.48E-04	9.4
Bourbon	UE-7nS; 137 m from working point	08/21/2001	<0.04	n.a.	23.1	1.47E-07	0.023
Cambric	RNM-1; Cavity	06/03/2004	<1.3E-4	<0.037 ^b	16.2	2.06E-07	0.022
	RNM-25:91 m from working point	10/11/1999	<1.3E-5	(4.8 ± 2.6)x1E-5 ^a	11	2.12E-07	0.016
	Riverzo, of million working point	07/10/2003	<1.3E-6	n.a.	12.2	6.16E-07	0.050
	UE-5n; 510 m from RNM-2S	09/09/1999	1.7E-04	(8.5 ± 7.0)x1E-5 ^a	30	3.51E-09	0.0007
		02/12/2004	2.7E-04	n.a.	19	5.02E-07	0.064
Camembert	U-19q PS1d; Chimney	10/21/1998	n.a.	(3.1± 0.7)x1E-3 ^a	4.1	5.54E-06	0.15
		07/16/2003	4.8E-04	n.a.	4	2.77E-06	0.074
Cheshire	U-20n PS1ddh; Cavity	07/25/1998	n.a.	1.15 ± 0.25 ª	5.9	n.a.	n.a.
		09/21/1998	0.80 ± 0.04	0.74 ± 0.02 ^a , 0.422 ^b	5.8	n.a.	n.a.
		10/12/1999	0.57 ± 0.04	0.83 ± 0.16 ª	13	4.91E-05	4.3
Chancellor	U-19ad PS1A; Cavity	09/27/2004	1.70 ± 0.01	n.a.	19.4	5.59E-04	73
Dalhart	11-411 PS2a: Chimney	08/16/1999	0.49 ± 0.02	0.59 ± 0.02 ^a , 0.55 ^b	5.8	2.80E-05	1.1
		10/09/2003	1.30 ± 0.13	1.29 ± 0.07 ^b	7.1	1.04E-04	4.9
Nash	UE-2ce; 183 m from working point	08/22/2001	<1.3E-4	n.a.	9.4	1.88E-05	1.2
Tybo/Benham†	ER-20-5 #1 (701-784 m) ^d ; 280/1300 m from Tybo /Benham working points	07/09/1998	0.022	0.010 ± 0.002 ^a	7	2.14E-04	10.0
		11/30/2004	0.017	<0.04 ^b	5.4	1.99E-04	7.2
	$ER-20-5 \#3 (1046-1183 m)^{\circ};$	04/30/1998	<0.04	<0.001 ^a	8.2	n.a.	n.a.
	working points	11/29/2004	7.0E-04	n.a.	4.7	1.66E-06	0.052
Irish Sea Water	IAEA-381		0.2	0.22 ± 0.01 ^c			

Table 1. Technetium and Iodine in NTS Groundwater Samples

n.a. = not analyzed. ^a = ⁹⁹Tc analyses performed by LSC; ^b = ⁹⁹Tc analyses performed by AMS; ^c = Literature reported value; ^d = open interval where sampling occurred. [†] Both the Tybo and Benham tests are listed since the ER-20-5 well cluster was drilled in the near-field (~300 m from the surface ground zero) environment of the Tybo test. However, Pu isotopic signatures indicate the radionuclides in water samples from ER-20-5 wells are derived from the Benham test detonated ~1300 m up-gradient.¹⁸

Sample		⁹⁹ Tc	⁹⁹ Tc	Total Iodine	129 T /127 T	¹²⁹ I
ID	sample description	(ng/kg)	(Bq/kg)	(µg/kg)	1/ 1	(mBq/kg)
Blank		<1	<1		3.0E-13	
CH01a	gray volcanic rocks	9	5	23.6	3.1E-07	0.049
CH01b	gray volcanic rocks with some black melt glass on surface	1.9	12	26	3.7E-08	0.0064
СН03а	reddish-brown melt glass, non- vesicular	729 ± 31	458±20	14.3	8.8E-04	83
CH03b	pale-gray volcanic rock mix with small portion of melt glass	39 ± 4	24±3			
CH04a	vesicular brown melt glass	669	420	40.3	1.7E-04	45
CH04b	volcanic rock, some partially melted to form light-colored vesicular glass	61 ± 3	38±2	12.6	1.1E-04	9.1
CH06a	black melt glass	597	375	5	1.3E-03	44
CH06b	black melt glass mixed with volcanic rock	632	397	3.4	7.2E-04	16
CH09a	dark brown / black melt glass	742	466	0.9	3.9E-03	23
CH09b	dark brown / black melt glass	695	436			
CH12	black melt glass	645 ± 17	405±11	14.1		
CH14	volcanic rock, some partially melted to form light-colored non-vesicular glass	49 ± 3	31±2	16.7	4.4E-05	4.9
CH16	dark brown/black melt glass	747	469	3	2.4E-03	49

 Table 2. Technetium and Iodine Data of Solid Samples from the Chancellor Test Cavity

	Total Mass (g)	Total ⁹⁹ Tc (MBq)	⁹⁹ Tc%	⁹⁹ Tc% IAEA	Total ¹²⁹ I (MBq)	¹²⁹ I%	¹²⁹ I% IAEA
Melt Glass	1.43E11	6.14E4	65%	80	7.0	28%	50
Rubble	1.52E12	3.35E4	35%	20	5.3	24%	40
Groundwater	1.80E11	3.07E2	0.3%	0	13.0	48%	10

Table 3. Distribution of Radionuclides in the Chancellor Test Cavity

LIST OF FIGURES

Figure 1: Cross section of the Chancellor cavity, chimney, and post-shot boreholes showing the locations of sidewall core samples that were used in this investigation. Main hole (PS1A); first sidetrack (PS1AS) and second sidetrack (PS1ASS). MD: measured depth, TVD: total vertical depth.

