8 research outputs found

    āļāļēāļĢāļĻāļķāļāļĐāļēāļ„āļļāļ“āļŠāļĄāļšāļąāļ•āļīāļĨāļ°āļ­āļ­āļ‡āļāļ­āļĒāļ‚āļ­āļ‡āļ‹āļąāļĨāļšāļđāļ—āļēāļĄāļ­āļĨ āļ‹āļąāļĨāđ€āļŸāļ• āđ‚āļ”āļĒāđƒāļŠāđ‰āļ­āļļāļ›āļāļĢāļ“āđŒāļžāđˆāļ™āļĢāļļāđˆāļ™āđƒāļŦāļĄāđˆ āļ—āļĩāđˆāļ­āļēāļĻāļąāļĒāļŦāļĨāļąāļāļāļēāļĢāļāļēāļĢāļŠāļąāđˆāļ™āļ‚āļ­āļ‡āđ€āļĄāļĄāđ€āļšāļĢāļ™ Aerosol Characterisation of Nebulised Salbutamol Sulfate Produced by A Recent Nebuliser with Modern Vibrating Membrane Technology

    Get PDF
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­ āļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒ: āđ€āļžāļ·āđˆāļ­āļĻāļķāļāļĐāļēāļœāļĨāļ‚āļ­āļ‡āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒ 0.9% āđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāļ„āļĨāļ­āđ„āļĢāļ”āđŒ (NaCl) āļ—āļĩāđˆāļĄāļĩāļ•āđˆāļ­āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđƒāļ™āļāļēāļĢāļŠāļĢāđ‰āļēāļ‡āļĨāļ°āļ­āļ­āļ‡āļāļ­āļĒāļ”āđ‰āļ§āļĒāđ€āļ™āļšāļđāđ„āļĨāđ€āļ‹āļ­āļĢāđŒāļĢāļļāđˆāļ™āđƒāļŦāļĄāđˆ (PARI VELOXÂŪ) āļ—āļĩāđˆāļ­āļēāļĻāļąāļĒāļŦāļĨāļąāļāļāļēāļĢāļāļēāļĢāļŠāļąāđˆāļ™āļ‚āļ­āļ‡āđ€āļĄāļĄāđ€āļšāļĢāļ™ āđāļĨāļ°āļ„āļļāļ“āļŠāļĄāļšāļąāļ•āļīāļāļēāļĢāļāļĢāļ°āļˆāļēāļĒāļ‚āļ™āļēāļ”āļ‚āļ­āļ‡āļĨāļ°āļ­āļ­āļ‡āļāļ­āļĒāļ‹āļąāļĨāļšāļđāļ—āļēāļĄāļ­āļĨ āļ‹āļąāļĨāđ€āļŸāļ• āļ”āđ‰āļ§āļĒāđ€āļ„āļĢāļ·āđˆāļ­āļ‡ Next Generation Impactor (NGI) āļ‹āļķāđˆāļ‡āļˆāļģāļĨāļ­āļ‡āļĢāļ°āļšāļšāļ—āļēāļ‡āđ€āļ”āļīāļ™āļŦāļēāļĒāđƒāļˆ āļ§āļīāļ˜āļĩāļāļēāļĢāļĻāļķāļāļĐāļē: āļĻāļķāļāļĐāļēāļ„āļ§āļēāļĄāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļĢāļ°āļŦāļ§āđˆāļēāļ‡āļ‚āļ­āļ‡āđ€āļŦāļĨāļ§āļ—āļĩāđˆāļ›āļĢāļīāļĄāļēāļ•āļĢāļ•āđˆāļēāļ‡ āđ† āļ—āļĩāđˆāđƒāļŠāđˆāļĨāļ‡āđ€āļ™āļšāļđāđ„āļĨāđ€āļ‹āļ­āļĢāđŒāļāļąāļšāļĢāļ°āļĒāļ°āđ€āļ§āļĨāļēāļ—āļĩāđˆāđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļžāđˆāļ™āļˆāļ™āđ„āļĄāđˆāļĄāļĩāļĨāļ°āļ­āļ­āļ‡āļĒāļēāļŦāļĨāļ‡āđ€āļŦāļĨāļ·āļ­āļ­āļ­āļāļĄāļē āļ•āļĨāļ­āļ”āļˆāļ™āļĄāļ§āļĨāđāļĨāļ°āļĢāđ‰āļ­āļĒāļĨāļ°āļ‚āļ­āļ‡āļĨāļ°āļ­āļ­āļ‡āļāļ­āļĒāļ—āļąāđ‰āļ‡āļŦāļĄāļ”āļ—āļĩāđˆāļ­āļ­āļāļˆāļēāļ PARI VELOXÂŪ nebuliser āļ„āļģāļ™āļ§āļ“āļˆāļēāļāļ„āļ§āļēāļĄāđāļ•āļāļ•āđˆāļēāļ‡āļ‚āļ­āļ‡āļ™āđ‰āļģāļŦāļ™āļąāļāđ€āļ™āļšāļđāđ„āļĨāđ€āļ‹āļ­āļĢāđŒāļāļąāļšāļ‚āļ­āļ‡āđ€āļŦāļĨāļ§āļāđˆāļ­āļ™āđāļĨāļ°āļŦāļĨāļąāļ‡āļžāđˆāļ™ āđ‚āļ”āļĒāļ—āļ”āļŠāļ­āļšāļāļąāļšāļ™āđ‰āļģāđāļĨāļ°āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒ 0.9%  NaCl  āļˆāļēāļāļ™āļąāđ‰āļ™āļžāđˆāļ™āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāļĒāļēāļ‹āļąāļĨāļšāļđāļ—āļēāļĄāļ­āļĨ āļ‹āļąāļĨāđ€āļŸāļ• āļ—āļĩāđˆāļœāļŠāļĄāļāļąāļš 0.9% NaCl āļ›āļĢāļīāļĄāļēāļ•āļĢ 2.5 āļĄāļīāļĨāļĨāļīāļĨāļīāļ•āļĢ āļ”āđ‰āļ§āļĒ PARI VELOXÂŪ nebuliser āļœāđˆāļēāļ™āđ€āļ„āļĢāļ·āđˆāļ­āļ‡ NGI āļ—āļĩāđˆāļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļĨāļĄ 15 āļĨāļīāļ•āļĢāļ•āđˆāļ­āļ™āļēāļ—āļĩ āļ™āļēāļ™ 2 āļ™āļēāļ—āļĩ 30  āļ§āļīāļ™āļēāļ—āļĩ āđāļĨāđ‰āļ§āđ€āļāđ‡āļšāļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļĒāļēāļ—āļĩāđˆāļāļĢāļ°āļˆāļēāļĒāļ•āļēāļĄāļŠāđˆāļ§āļ™āļ•āđˆāļēāļ‡ āđ† āļ‚āļ­āļ‡ NGI āđ€āļžāļ·āđˆāļ­āļ›āļĢāļ°āđ€āļĄāļīāļ™āļ„āļļāļ“āļŠāļĄāļšāļąāļ•āļīāđāļĨāļ°āļāļēāļĢāļāļĢāļ°āļˆāļēāļĒāļ‚āļ™āļēāļ”āļ‚āļ­āļ‡āļĨāļ°āļ­āļ­āļ‡āļāļ­āļĒāļ”āđ‰āļ§āļĒāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āđ‚āļ„āļĢāļĄāļēāđ‚āļ—āļāļĢāļēāļŸāļŸāļĩāļ‚āļ­āļ‡āđ€āļŦāļĨāļ§āļŠāļĄāļĢāļĢāļ–āļ™āļ°āļŠāļđāļ‡ āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļē: āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāļ—āļĩāđˆāļĄāļĩāđ€āļŪāđ„āļĨāļ”āđŒāđ„āļ­āļ­āļ­āļ™āļŠāđˆāļ§āļĒāđ€āļžāļīāđˆāļĄāļĄāļ§āļĨāđāļĨāļ°āļĢāđ‰āļ­āļĒāļĨāļ°āļ‚āļ­āļ‡āļĨāļ°āļ­āļ­āļ‡āļāļ­āļĒāļ—āļąāđ‰āļ‡āļŦāļĄāļ”āļ—āļĩāđˆāļ­āļ­āļāļĄāļēāļˆāļēāļāļ­āļļāļ›āļāļĢāļ“āđŒāļžāđˆāļ™āļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ™āļąāļĒāļŠāļģāļ„āļąāļ (P-value < 0.05) āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāđ„āļ­āļ­āļ­āļ™āļĨāļ”āļ›āļĢāļ°āļˆāļļāļ‚āļ­āļ‡āļ™āđ‰āļģāļ—āļģāđƒāļŦāđ‰āļ‚āļ­āļ‡āđ€āļŦāļĨāļ§āđ€āļāļēāļ°āļ•āļīāļ”āļžāļ·āđ‰āļ™āļœāļīāļ§āļ­āļļāļ›āļāļĢāļ“āđŒāļžāđˆāļ™āļĨāļ”āļĨāļ‡ āļ›āļĢāļīāļĄāļēāļ“āļĨāļ°āļ­āļ­āļ‡āļāļ­āļĒāļĄāļēāļāļ‚āļķāđ‰āļ™ āđ€āļ™āļšāļđāđ„āļĨāđ€āļ‹āļ­āļĢāđŒāļĢāļļāđˆāļ™āđƒāļŦāļĄāđˆāļŠāļēāļĄāļēāļĢāļ–āļœāļĨāļīāļ•āļĨāļ°āļ­āļ­āļ‡āļāļ­āļĒāļ‚āļ­āļ‡āļ‹āļąāļĨāļšāļđāļ—āļēāļĄāļ­āļĨ āļ‹āļąāļĨāđ€āļŸāļ•āļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļ•āđˆāļ­āļāļēāļĢāļ™āļģāļŠāđˆāļ‡āđ„āļ›āļ›āļ­āļ” āļˆāļēāļāļ„āđˆāļēāļāļĨāļēāļ‡āļ‚āļ™āļēāļ”āđ€āļŠāđ‰āļ™āļœāđˆāļēāļ™āļĻāļđāļ™āļĒāđŒāļāļĨāļēāļ‡āļ‚āļ­āļ‡āļĨāļ°āļ­āļ­āļ‡āļĒāļē (3.95 āđ„āļĄāļ„āļĢāļ­āļ™) āđāļĨāļ°āļĢāđ‰āļ­āļĒāļĨāļ° 44 āļ‚āļ­āļ‡āļ•āļąāļ§āļĒāļēāļ—āļĩāđˆāļĄāļĩāļ‚āļ™āļēāļ”āđ€āļĨāđ‡āļāļāļ§āđˆāļē 5 āđ„āļĄāļ„āļĢāļ­āļ™ āļŠāļĢāļļāļ›: āđāļžāļĢāļĩ āļ§āļĩāļĨāđ‡āļ­āļ„ āđ€āļ™āļšāļđāđ„āļĨāđ€āļ‹āļ­āļĢāđŒ āđ€āļ›āđ‡āļ™āļ­āļļāļ›āļāļĢāļ“āđŒāļžāđˆāļ™āļ—āļĩāđˆāļŠāļēāļĄāļēāļĢāļ–āļœāļĨāļīāļ•āļĨāļ°āļ­āļ­āļ‡āļāļ­āļĒāļĒāļēāļ‹āļąāļĨāļšāļđāļ—āļēāļĄāļ­āļĨ āļ‹āļąāļĨāđ€āļŸāļ•āļ—āļĩāđˆāļœāļŠāļĄāļāļąāļš 0.9% NaCl āđ‚āļ”āļĒāļĨāļ°āļ­āļ­āļ‡āļāļĢāļ°āļˆāļēāļĒāļ•āļēāļĄāļŠāđˆāļ§āļ™āļ•āđˆāļēāļ‡ āđ† āļ‚āļ­āļ‡āļ—āļēāļ‡āđ€āļ”āļīāļ™āļŦāļēāļĒāđƒāļˆāđ€āļŦāļĄāļēāļ°āļ•āđˆāļ­āļāļēāļĢāļ™āļģāļŠāđˆāļ‡āđ„āļ›āļĒāļąāļ‡āļ›āļ­āļ” āđ€āļ™āļšāļđāđ„āļĨāđ€āļ‹āļ­āļĢāđŒāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļ­āļēāļˆāđ€āļ›āđ‡āļ™āļ›āļĢāļ°āđ‚āļĒāļŠāļ™āđŒāļŠāļģāļŦāļĢāļąāļšāļ™āļģāļŠāđˆāļ‡āļŠāļđāļ•āļĢāļ•āļģāļĢāļąāļšāļ­āļ·āđˆāļ™ āđ† āļ—āļĩāđˆāļžāļąāļ’āļ™āļēāđƒāļ™āļĢāļđāļ›āđāļšāļšāļĨāļ°āļ­āļ­āļ‡āļāļ­āļĒāđ„āļ”āđ‰āļ„āļģāļŠāļģāļ„āļąāļ: āđ„āļ§āđ€āļšāļĢāļ•āļīāđ‰āļ‡ āđ€āļĄāļŠ, āđ€āļ™āļšāļđāđ„āļĨāđ€āļ‹āļ­āļĢāđŒ, āđ€āļ™āđ‡āļ„āđ€āļˆāļ­āđ€āļ™āđ€āļĢāļŠāļąāļ™ āļ­āļīāļĄāđāļžāđ‡āļ„āđ€āļ•āļ­āļĢāđŒ, āļĢāđ‰āļ­āļĒāļĨāļ°āļ‚āļ­āļ‡āļ•āļąāļ§āļĒāļēāļ—āļĩāđˆāļĄāļĩāļ‚āļ™āļēāļ”āđ€āļĨāđ‡āļāļāļ§āđˆāļē 5 āđ„āļĄāļ„āļĢāļ­āļ™, āļ‹āļąāļĨāļšāļđāļ—āļēāļĄāļ­āļĨ āļ‹āļąāļĨāđ€āļŸāļ•Abstract Objective: To study effects of 0.9 % sodium chloride solution (NaCl) on the performance of a PARI VELOXÂŪ vibrating-mesh nebuliser (total mass output and output efficiency of nebulised fluids) compared to the ion-free water, and to determine aerodynamic properties of nebulised salbutamol sulfate using the Next Generation Impactor (NGI) to simulate respiratory tract. Method: Certain volumes of fluid filled in the PARI VELOXÂŪ nebuliser was nebulised to dryness. Dryness time, total mass output, and output efficiency were recorded. To determine the properties of nebulised salbutamol sulfate, the NGI was operated at 15 L/min with 2.5 mL of salbutamol sulfate solution with 0.9% NaCl. After 2 min 30 sec of nebulisation, the samples were recovered and assayed by a high performance liquid chromatography (HPLC) analysis for aerosolization key parameters. Results: The aerosol mass output and output efficiency were significantly higher when halide ion was included (P-value < 0.05). This may be because halide suppresses the electrostatic charge in water, resulting in less liquid adherence to the surfaces of mesh membrane and more droplets. This new nebuliser generated aerosols of salbutamol sulfate with 0.9% NaCl with desired pulmonary delivery characteristics such as the mass median aerodynamic diameter of 3.95 Âĩm and high fine particle fraction (44% particles with < 5-Âĩm diameter). Conclusion: The properties of nebulised salbutamol sulfate with the addition of 0.9% NaCl emitted from PARI VELOXÂŪ vibrating-mesh nebulisers are desirable for pulmonary delivery in terms of aerodynamic particle size distribution. The performance of this device may be proposed as particularly suitable nebuliser for the delivery of various novel formulations. Keywords: vibrating-mesh nebuliser, Next Generation Impactor (NGI), fine particle fraction (FPF), salbutamol sulfate

    Preparation and characterization of curcumin-loaded liposomes for delivery to the lungs

    Get PDF
    Curcumin-loaded liposomes comprising dipalmitoylphosphatidylcholine, cholesterol, and dioleoylphosphatidylethanolamine (72:8:20 mole ratio) were prepared by the thin-film hydration method, followed by probe sonication to achieve a mean diameter <200 nm. The properties of aerosols generated using from 4 mL optimized liposome preparation filled into an air-jet nebulizer were determined using a Fast Screening Impactor (FSI) pre-cooled at 2–8°C for at least 90 min at 15 L/min. Curcumin recovered from the impactor and nebulizer was quantified using a validated high-performance liquid chromatography method. Overall, 2.5% w/w curcumin-loaded liposomes was the optimal formulation based on the maximum encapsulation efficiency of approximately 87% and mean hydrodynamic diameter of 97 nm. This chosen curcumin concentration was effectively aerosolized with a fine particle fraction of 53.25%, and a fine particle dose of 53 Âĩg being deposited on the lower stage of the FSI (cutoff diameter 5 Âĩm)

    Development and characterisation of nanocarriers system of hydrophobic drugs for pulmonary delivery

    Get PDF
    Background: The bioavailability of BCS class II drugs used in non-small cell lung cancer (NSCLC) treatment is limited by low water solubility. Also, current therapies for NSCLC cause systemic side effects and sub-therapeutic levels of drugs at the target sites. Colloidal systems administered by the pulmonary route may overcome these problems. Method: A genistein-mPEG conjugate was synthesised and characterised for delivering erlotinib or curcumin in micelles. Liposomes co-loaded with genistein and erlotinib were developed as an alternative formulation approach and studies using DSC and HPLC analysis. The aerosol properties of micelles and liposomes were measured using the Next Generation Impactor (NGI). The Fast Screening Impactor (FSI) was investigated as an alternative to the NGI for aerosol characterisation of nebulised liposomes. Three parameters (nebuliser types, impactor operating conditions and liposome size reduction methods) were studied using the FSI. Results: Successful conjugation was confirmed by FT-IR, NMR and MS. Curcumin loading into conjugate micelles had mean size < 200nm, with ≈ 50% encapsulation efficiency (EE). However, the genistein conjugate was not appropriate for erlotinib delivery, having low EE (<3%). For liposomes, the mean size was ≈130 nm, with 10% EE (erlotinib) and 100% EE (genistein). DSC results showed incorporation of both drugs into the bilayer, giving a broadening of the main phase transition of DPPC with a decreased main phase temperature. The air-jet nebuliser was superior to the vibrating-mesh device in terms of significantly higher fine particle dose (FPD) and fine particle fraction (FPF). The FSI (5± 3 ¹C), with modification operated at 15 L/min, was found to be simple to use and labour-saving for simple aerosol characterisation, giving comparable results to the NGI for FPD and FPF. Extruded liposomes showed greater size stability than sonicated vesicles during preparation and nebulisation. Conclusions: Optimised micelles and liposomes with desired mean size and drug entrapments have the potential for nebuliser delivery of genistein, erlotinib and curcumin, and may be suitable for delivering other hydrophobic drugs

    āļāļēāļĢāđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāđ‚āļ‹āļĨāļđāļžāļĨāļąāļŠÂŪ āļāļąāļšāļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāļ­āļ·āđˆāļ™ āđƒāļ™āļāļēāļĢāđ€āļ•āļĢāļĩāļĒāļĄāļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāļīāļāđ„āļĄāđ€āļ‹āļĨāļĨāđŒ āļŠāļģāļŦāļĢāļąāļšāļ™āļģāļŠāđˆāļ‡āđ€āļ­āļ­āļĢāđŒāđ‚āļĨāļ—āļīāļ™āļīāļš Comparison of SoluplusÂŪ with Other Polymers to Form Polymeric Micelles for Erlotinib Delivery

    Get PDF
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­ āļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒ: āđ€āļžāļ·āđˆāļ­āđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļ„āļļāļ“āļŠāļĄāļšāļąāļ•āļīāđ„āļĄāđ€āļ‹āļĨāļĨāđŒāļ‚āļ­āļ‡āļĒāļēāđ€āļ­āļ­āļĢāđŒāđ‚āļĨāļ—āļīāļ™āļīāļšāļ—āļĩāđˆāđ€āļ•āļĢāļĩāļĒāļĄāļˆāļēāļāļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāđ‚āļ‹āļĨāļđāļžāļĨāļąāļŠ āđāļĨāļ°āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāļ­āļ·āđˆāļ™āļ­āļĩāļ 4 āļŠāļ™āļīāļ” āļāđˆāļ­āļ™āļāļēāļĢāļ•āļąāđ‰āļ‡āļŠāļđāļ•āļĢāļ•āļģāļĢāļąāļšāđ€āļžāļ·āđˆāļ­āļ™āļģāļŠāđˆāļ‡āļĒāļēāļ—āļēāļ‡āđ€āļ‚āđ‰āļēāļ—āļēāļ‡āļ›āļ­āļ” āļ§āļīāļ˜āļĩāļāļēāļĢāļĻāļķāļāļĐāļē: āļāļēāļĢāļžāļąāļ’āļ™āļēāļĢāļ°āļšāļšāđ„āļĄāđ€āļ‹āļĨāļĨāđŒāđƒāļ™āļĢāļ°āļ”āļąāļšāļ™āļēāđ‚āļ™āđ€āļĄāļ•āļĢ āđ€āļžāļ·āđˆāļ­āļ™āļģāļŠāđˆāļ‡āđ€āļ­āļ­āļĢāđŒāđ‚āļĨāļ—āļīāļ™āļīāļšāļ”āđ‰āļ§āļĒāļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒ 5 āļŠāļ™āļīāļ” āđ„āļ”āđ‰āđāļāđˆ polyvinyl caprolactame-polyvinyl acetate- polyethylene glycol graft copolymer (SoluplusÒ), macrogal 15 hydroxysterate (KolliphorÒ HS 15), poloxamer 188 (LutrolÒ micro 68), D-a-tocopherol polyethylene glycol 1000 succinate (TPGS) āđāļĨāļ° polyethylene glycol 5000–distearoylphosphatidylethanolamine (mPEG 5000- DSPE) āđ€āļ•āļĢāļĩāļĒāļĄāđ‚āļ”āļĒāļ§āļīāļ˜āļĩāļ—āļīāļ™āļŸāļīāļĨāđŒāļĄāđ„āļŪāđ€āļ”āļĢāļŠāļąāđˆāļ™ āļ—āļļāļāļŠāļđāļ•āļĢāļ•āļģāļĢāļąāļšāļ—āļĩāđˆāđ€āļ•āļĢāļĩāļĒāļĄāļ‚āļķāđ‰āļ™āļˆāļēāļāļŠāļąāļ”āļŠāđˆāļ§āļ™āđ‚āļ”āļĒāļĄāļ§āļĨāļ‚āļ­āļ‡āļĒāļēāļ•āđˆāļ­āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒ āđ€āļ—āđˆāļēāļāļąāļš 1:20 āļˆāļ°āļ–āļđāļāļ›āļĢāļ°āđ€āļĄāļīāļ™āļ„āļļāļ“āļŠāļĄāļšāļąāļ•āļīāļ•āđˆāļēāļ‡ āđ† āļ„āļ·āļ­ āļ‚āļ™āļēāļ”āđāļĨāļ°āļ›āļĢāļ°āļˆāļļāļ‚āļ­āļ‡āđ„āļĄāđ€āļ‹āļĨāļĨāđŒ āļ•āļĨāļ­āļ”āļˆāļ™āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđƒāļ™āļāļēāļĢāļāļąāļāđ€āļāđ‡āļšāđ€āļ­āļ­āļĢāđŒāđ‚āļĨāļ—āļīāļ™āļīāļš āđ€āļžāļ·āđˆāļ­āļ›āļĢāļ°āđ€āļĄāļīāļ™āļ§āđˆāļēāļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāļŠāļ™āļīāļ”āđƒāļ”āļĄāļĩāļ„āļ§āļēāļĄāđ€āļŦāļĄāļēāļ°āļŠāļĄāđƒāļ™āļāļēāļĢāļ™āļģāļŠāđˆāļ‡āļ•āļąāļ§āļĒāļēāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļĄāļēāļāļ—āļĩāđˆāļŠāļļāļ” āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļē: āđ‚āļ‹āļĨāļđāļžāļĨāļąāļŠāļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđƒāļ™āļāļēāļĢāļāļąāļāđ€āļāđ‡āļšāđ€āļ­āļ­āļĢāđŒāđ‚āļĨāļ—āļīāļ™āļīāļšāļĄāļēāļāļ—āļĩāđˆāļŠāļļāļ” āđ€āļĄāļ·āđˆāļ­āđ€āļ—āļĩāļĒāļšāļāļąāļšāļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāļ­āļĩāļ 4 āļŠāļ™āļīāļ” āđ‚āļ”āļĒāļ„āļļāļ“āļŠāļĄāļšāļąāļ•āļīāļ‚āļ­āļ‡āļĢāļ°āļšāļšāļ™āļģāļŠāđˆāļ‡āļĒāļēāļĄāļĩāļ„āļ§āļēāļĄāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ•āđˆāļ­āļāļēāļĢāļ™āļģāļŠāđˆāļ‡āļ—āļēāļ‡āļ›āļ­āļ” āļ„āļ·āļ­ āļ‚āļ™āļēāļ”āļ‚āļ­āļ‡āđ„āļĄāđ€āļ‹āļĨāļĨāđŒāļ—āļĩāđˆāđ€āļĨāđ‡āļāļāļ§āđˆāļē 200 āļ™āļēāđ‚āļ™āđ€āļĄāļ•āļĢ āđāļĨāļ°āļāļēāļĢāļāļĢāļ°āļˆāļēāļĒāļ‚āļ­āļ‡āļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āļ™āđ‰āļ­āļĒāļāļ§āđˆāļē 0.1  āļ­āļēāļˆāđāļ›āļĨāļœāļĨāđ„āļ”āđ‰āļ§āđˆāļēāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđƒāļ™āļāļēāļĢāļāļąāļāđ€āļāđ‡āļšāļĒāļēāđāļ›āļĢāļœāļąāļ™āļ•āļĢāļ‡āļāļąāļšāļžāļ·āđ‰āļ™āļ—āļĩāđˆ/āļ›āļĢāļīāļĄāļēāļ•āļĢāļ‚āļ­āļ‡āļŠāđˆāļ§āļ™āļ—āļĩāđˆāđ„āļĄāđˆāļŠāļ­āļšāļ™āđ‰āļģāļ‚āļ­āļ‡āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒ āđ‚āļ”āļĒāļšāļĢāļīāđ€āļ§āļ“āļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļˆāļ°āđ€āļžāļīāđˆāļĄāđ‚āļ­āļāļēāļŠāđƒāļ™āļāļēāļĢāļ—āļĩāđˆāļ•āļąāļ§āļĒāļēāļˆāļ°āđ€āļ‚āđ‰āļēāđāļ—āļĢāļ āđāļĨāļ°/āļŦāļĢāļ·āļ­ āļĨāļ°āļĨāļēāļĒāđ€āļ›āđ‡āļ™āđ€āļ™āļ·āđ‰āļ­āđ€āļ”āļĩāļĒāļ§āļāļąāļ™āļāļąāļšāļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒ āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āđƒāļ™āļāļēāļĢāđāļ—āļĢāļāđ€āļ‚āđ‰āļēāđ„āļ›āđƒāļ™āļĢāļ°āļšāļšāđ„āļĄāđ€āļ‹āļĨāļĨāđŒāļ‚āļ­āļ‡āđ€āļ­āļ­āļĢāđŒāđ‚āļĨāļ—āļīāļ™āļīāļšāļ–āļđāļāļˆāļģāļāļąāļ” āļ­āļąāļ™āđ€āļ™āļ·āđˆāļ­āļ‡āļĄāļēāļˆāļēāļāļ„āļ§āļēāļĄāđ€āļāļ°āļāļ°āļ‚āļ­āļ‡āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļ—āļĩāđˆāđ€āļ›āđ‡āļ™āļŠāļēāļĒāđ„āļŪāđ‚āļ”āļĢāļ„āļēāļĢāđŒāļšāļ­āļ™āđāļĨāļ°āļžāļąāļ™āļ˜āļ°āļŠāļēāļĄāļ—āļĩāđˆāļ•āļīāļ”āļāļąāļšāļ§āļ‡āđ€āļšāļ™āļ‹āļĩāļ™ āļŠāļĢāļļāļ›: āđ‚āļ‹āļĨāļđāļžāļĨāļąāļŠāļ­āļēāļˆāļ™āļģāđ„āļ›āļžāļąāļ’āļ™āļēāđ€āļ›āđ‡āļ™āļĢāļ°āļšāļšāļ™āļģāļŠāđˆāļ‡āđ€āļ­āļ­āļĢāđŒāđ‚āļĨāļ—āļīāļ™āļīāļšāđ€āļžāļ·āđˆāļ­āļ™āļģāļŠāđˆāļ‡āļĒāļēāļ—āļēāļ‡āļ›āļ­āļ” āđāļĨāļ°āļ­āļēāļˆāđƒāļŠāđ‰āđ€āļ›āđ‡āļ™āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāļŦāļĨāļąāļāđƒāļ™āļāļēāļĢāļ™āļģāļŠāđˆāļ‡āļĒāļēāļ—āļĩāđˆāļĨāļ°āļĨāļēāļĒāļ™āđ‰āļģāļĒāļēāļāļ•āļąāļ§āļ­āļ·āđˆāļ™ āđ† āđ„āļ”āđ‰āļ„āļģāļŠāļģāļ„āļąāļ: āđ‚āļ‹āļĨāļđāļžāļĨāļąāļŠ, āđ€āļ­āļ­āļĢāđŒāđ‚āļĨāļ—āļīāļ™āļīāļš, āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāļīāļ āđ„āļĄāđ€āļ‹āļĨāļĨāđŒÂ Abstract Objective: To compare micellar properties of erlotinib by using SoluplusÒ and 4 other polymers to achieve desired characteristics for pulmonary delivery. Method: Erlotinib-incorporated polymeric micelles were prepared from five common polymers; namely, polyvinyl caprolactame- polyvinyl acetate- polyethylene glycol graft copolymer (SoluplusÒ), macrogal 15 hydroxysterate (KolliphorÒ HS 15), poloxamer 188 (LutrolÒ micro 68), D-a-tocopherol polyethylene glycol 1000 succinate (TPGS) and polyethylene glycol 5000–distearoylphosphatidyl ethanolamine (mPEG 5000- DSPE) using thin-film hydration method, with drug:polymer mass ratio of 1:20. All formulations were then characterised for their hydrodynamic diameter, zeta potential and encapsulation efficiency to investigate the appropriate polymer for erlotinib delivery. Results: The highest encapsulation efficiency was from SoluplusÒ with desirable hydrodynamic diameter smaller than 200 nm and a PDI value of less than 0.1. It might be assumed that more polymer chains or more hydrophobic groups provide more entrapment sites leading to increased solubilisation and thus the incorporation of erlotinib. Steric hindrances of two branches aliphatic chain and three benzene rings attached to alkyne of erlotinib play an important role in encapsulation efficiency, resulting in the difficulty to be packed into other alternative polymers. Conclusion: Based on the results of characterisation of erlotinib-loaded polymeric micelles, SoluplusÒ might be considered as a promising polymer for producing nanocarriers for nebulised delivery, and may be applicable for other hydrophobic drugs. Keywords: soluplus, erlotinib, polymeric micelles

    ïŧŋComparison of efficacies of full and abbreviated cascade impactors in aerosol characterization of nebulized salbutamol sulfate produced by a jet nebulizer

    No full text
    The properties of aerosols generated from salbutamol sulfate solution (1 mg/mL) using an air-jet nebulizer were evaluated using Next Generation Impactor (NGI), a full cascade impactor, and Fast Screening Impactor (FSI), an abbreviated impactor measurement (AIM). Both impactors were operated under the same experimental conditions. The samples were recovered and assayed using validated high performance liquid chromatography (HPLC). The study investigated AIM-Human Respiratory Tract (HRT) concept by comparing key parameters of aerosolization i.e. fine particle dose (FPD) and fine particle fraction (FPF) measured using FSI, with NGI as baseline. The results showed that FSI yielded different but comparable values for FPD and FPF, indicating that it is alternative impactor to NGI. Despite the fact that FSI could not replace NGI, it may be used as an alternative impactor for simple and rapid aerosol characterization of formulations in some pharmaceutical development and quality control processes

    Comparison between air-jet and vibrating-mesh nebulizers in the delivery of nebulized salbutamol sulfate determined using an abbreviated impactor

    Get PDF
    Purpose: To investigate the aerodynamic properties of nebulized droplets from nebulizers for delivery of salbutamol sulfate. Methods: Drug deposits were collected from fast screening impactor (FSI). Parameters of aerosolization such as dryness time and salbutamol sulfate characteristics were determined using chilled FSI at a flow velocity of 15 L/min, with salbutamol sulfate solution nebulized to dryness. An optimized HPLC procedure was used to analyze the deposited salbutamol sulfate across the FSI. Parameters comprising mass balance, FPD and FPF were determined. Results: Statistical analysis showed that the performance of vibrating-mesh was more efficient than that of air-jet device, as depicted in significantly higher values FPF of aerosolized droplets (60 and 40 %, respectively; p &lt; 0.05). Conclusion: The performance of aerosol generation using vibrating-mesh was more superior to that of air-jet nebulizer. However, there is need for further investigations on various physicochemical properties of nebulizer fluid as well as improvement in percentage FPF
    corecore