8 research outputs found
āļāļēāļĢāļĻāļķāļāļĐāļēāļāļļāļāļŠāļĄāļāļąāļāļīāļĨāļ°āļāļāļāļāļāļĒāļāļāļāļāļąāļĨāļāļđāļāļēāļĄāļāļĨ āļāļąāļĨāđāļāļ āđāļāļĒāđāļāđāļāļļāļāļāļĢāļāđāļāđāļāļĢāļļāđāļāđāļŦāļĄāđ āļāļĩāđāļāļēāļĻāļąāļĒāļŦāļĨāļąāļāļāļēāļĢāļāļēāļĢāļŠāļąāđāļāļāļāļāđāļĄāļĄāđāļāļĢāļ Aerosol Characterisation of Nebulised Salbutamol Sulfate Produced by A Recent Nebuliser with Modern Vibrating Membrane Technology
āļāļāļāļąāļāļĒāđāļ āļ§āļąāļāļāļļāļāļĢāļ°āļŠāļāļāđ: āđāļāļ·āđāļāļĻāļķāļāļĐāļēāļāļĨāļāļāļāļŠāļēāļĢāļĨāļ°āļĨāļēāļĒ 0.9% āđāļāđāļāļĩāļĒāļĄāļāļĨāļāđāļĢāļāđ (NaCl) āļāļĩāđāļĄāļĩāļāđāļāļāļĢāļ°āļŠāļīāļāļāļīāļ āļēāļāđāļāļāļēāļĢāļŠāļĢāđāļēāļāļĨāļ°āļāļāļāļāļāļĒāļāđāļ§āļĒāđāļāļāļđāđāļĨāđāļāļāļĢāđāļĢāļļāđāļāđāļŦāļĄāđ (PARI VELOXÂŪ) āļāļĩāđāļāļēāļĻāļąāļĒāļŦāļĨāļąāļāļāļēāļĢāļāļēāļĢāļŠāļąāđāļāļāļāļāđāļĄāļĄāđāļāļĢāļ āđāļĨāļ°āļāļļāļāļŠāļĄāļāļąāļāļīāļāļēāļĢāļāļĢāļ°āļāļēāļĒāļāļāļēāļāļāļāļāļĨāļ°āļāļāļāļāļāļĒāļāļąāļĨāļāļđāļāļēāļĄāļāļĨ āļāļąāļĨāđāļāļ āļāđāļ§āļĒāđāļāļĢāļ·āđāļāļ Next Generation Impactor (NGI) āļāļķāđāļāļāļģāļĨāļāļāļĢāļ°āļāļāļāļēāļāđāļāļīāļāļŦāļēāļĒāđāļ āļ§āļīāļāļĩāļāļēāļĢāļĻāļķāļāļĐāļē: āļĻāļķāļāļĐāļēāļāļ§āļēāļĄāļŠāļąāļĄāļāļąāļāļāđāļĢāļ°āļŦāļ§āđāļēāļāļāļāļāđāļŦāļĨāļ§āļāļĩāđāļāļĢāļīāļĄāļēāļāļĢāļāđāļēāļ āđ āļāļĩāđāđāļŠāđāļĨāļāđāļāļāļđāđāļĨāđāļāļāļĢāđāļāļąāļāļĢāļ°āļĒāļ°āđāļ§āļĨāļēāļāļĩāđāđāļāđāđāļāļāļēāļĢāļāđāļāļāļāđāļĄāđāļĄāļĩāļĨāļ°āļāļāļāļĒāļēāļŦāļĨāļāđāļŦāļĨāļ·āļāļāļāļāļĄāļē āļāļĨāļāļāļāļāļĄāļ§āļĨāđāļĨāļ°āļĢāđāļāļĒāļĨāļ°āļāļāļāļĨāļ°āļāļāļāļāļāļĒāļāļąāđāļāļŦāļĄāļāļāļĩāđāļāļāļāļāļēāļ PARI VELOXÂŪ nebuliser āļāļģāļāļ§āļāļāļēāļāļāļ§āļēāļĄāđāļāļāļāđāļēāļāļāļāļāļāđāļģāļŦāļāļąāļāđāļāļāļđāđāļĨāđāļāļāļĢāđāļāļąāļāļāļāļāđāļŦāļĨāļ§āļāđāļāļāđāļĨāļ°āļŦāļĨāļąāļāļāđāļ āđāļāļĒāļāļāļŠāļāļāļāļąāļāļāđāļģāđāļĨāļ°āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒ 0.9% NaCl  āļāļēāļāļāļąāđāļāļāđāļāļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāļĒāļēāļāļąāļĨāļāļđāļāļēāļĄāļāļĨ āļāļąāļĨāđāļāļ āļāļĩāđāļāļŠāļĄāļāļąāļ 0.9% NaCl āļāļĢāļīāļĄāļēāļāļĢ 2.5 āļĄāļīāļĨāļĨāļīāļĨāļīāļāļĢ āļāđāļ§āļĒ PARI VELOXÂŪ nebuliser āļāđāļēāļāđāļāļĢāļ·āđāļāļ NGI āļāļĩāđāļāļ§āļēāļĄāđāļĢāđāļ§āļĨāļĄ 15 āļĨāļīāļāļĢāļāđāļāļāļēāļāļĩ āļāļēāļ 2 āļāļēāļāļĩ 30  āļ§āļīāļāļēāļāļĩ āđāļĨāđāļ§āđāļāđāļāļāļąāļ§āļāļĒāđāļēāļāļĒāļēāļāļĩāđāļāļĢāļ°āļāļēāļĒāļāļēāļĄāļŠāđāļ§āļāļāđāļēāļ āđ āļāļāļ NGI āđāļāļ·āđāļāļāļĢāļ°āđāļĄāļīāļāļāļļāļāļŠāļĄāļāļąāļāļīāđāļĨāļ°āļāļēāļĢāļāļĢāļ°āļāļēāļĒāļāļāļēāļāļāļāļāļĨāļ°āļāļāļāļāļāļĒāļāđāļ§āļĒāđāļāļĢāļ·āđāļāļāđāļāļĢāļĄāļēāđāļāļāļĢāļēāļāļāļĩāļāļāļāđāļŦāļĨāļ§āļŠāļĄāļĢāļĢāļāļāļ°āļŠāļđāļ āļāļĨāļāļēāļĢāļĻāļķāļāļĐāļē: āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāļāļĩāđāļĄāļĩāđāļŪāđāļĨāļāđāđāļāļāļāļāļāđāļ§āļĒāđāļāļīāđāļĄāļĄāļ§āļĨāđāļĨāļ°āļĢāđāļāļĒāļĨāļ°āļāļāļāļĨāļ°āļāļāļāļāļāļĒāļāļąāđāļāļŦāļĄāļāļāļĩāđāļāļāļāļĄāļēāļāļēāļāļāļļāļāļāļĢāļāđāļāđāļāļāļĒāđāļēāļāļĄāļĩāļāļąāļĒāļŠāļģāļāļąāļ (P-value < 0.05) āđāļāļ·āđāļāļāļāļēāļāđāļāļāļāļāļĨāļāļāļĢāļ°āļāļļāļāļāļāļāđāļģāļāļģāđāļŦāđāļāļāļāđāļŦāļĨāļ§āđāļāļēāļ°āļāļīāļāļāļ·āđāļāļāļīāļ§āļāļļāļāļāļĢāļāđāļāđāļāļĨāļāļĨāļ āļāļĢāļīāļĄāļēāļāļĨāļ°āļāļāļāļāļāļĒāļĄāļēāļāļāļķāđāļ āđāļāļāļđāđāļĨāđāļāļāļĢāđāļĢāļļāđāļāđāļŦāļĄāđāļŠāļēāļĄāļēāļĢāļāļāļĨāļīāļāļĨāļ°āļāļāļāļāļāļĒāļāļāļāļāļąāļĨāļāļđāļāļēāļĄāļāļĨ āļāļąāļĨāđāļāļāļāļĩāđāđāļŦāļĄāļēāļ°āļāđāļāļāļēāļĢāļāļģāļŠāđāļāđāļāļāļāļ āļāļēāļāļāđāļēāļāļĨāļēāļāļāļāļēāļāđāļŠāđāļāļāđāļēāļāļĻāļđāļāļĒāđāļāļĨāļēāļāļāļāļāļĨāļ°āļāļāļāļĒāļē (3.95 āđāļĄāļāļĢāļāļ) āđāļĨāļ°āļĢāđāļāļĒāļĨāļ° 44 āļāļāļāļāļąāļ§āļĒāļēāļāļĩāđāļĄāļĩāļāļāļēāļāđāļĨāđāļāļāļ§āđāļē 5 āđāļĄāļāļĢāļāļ āļŠāļĢāļļāļ: āđāļāļĢāļĩ āļ§āļĩāļĨāđāļāļ āđāļāļāļđāđāļĨāđāļāļāļĢāđ āđāļāđāļāļāļļāļāļāļĢāļāđāļāđāļāļāļĩāđāļŠāļēāļĄāļēāļĢāļāļāļĨāļīāļāļĨāļ°āļāļāļāļāļāļĒāļĒāļēāļāļąāļĨāļāļđāļāļēāļĄāļāļĨ āļāļąāļĨāđāļāļāļāļĩāđāļāļŠāļĄāļāļąāļ 0.9% NaCl āđāļāļĒāļĨāļ°āļāļāļāļāļĢāļ°āļāļēāļĒāļāļēāļĄāļŠāđāļ§āļāļāđāļēāļ āđ āļāļāļāļāļēāļāđāļāļīāļāļŦāļēāļĒāđāļāđāļŦāļĄāļēāļ°āļāđāļāļāļēāļĢāļāļģāļŠāđāļāđāļāļĒāļąāļāļāļāļ āđāļāļāļđāđāļĨāđāļāļāļĢāđāļāļąāļāļāļĨāđāļēāļ§āļāļēāļāđāļāđāļāļāļĢāļ°āđāļĒāļāļāđāļŠāļģāļŦāļĢāļąāļāļāļģāļŠāđāļāļŠāļđāļāļĢāļāļģāļĢāļąāļāļāļ·āđāļ āđ āļāļĩāđāļāļąāļāļāļēāđāļāļĢāļđāļāđāļāļāļĨāļ°āļāļāļāļāļāļĒāđāļāđāļāļģāļŠāļģāļāļąāļ: āđāļ§āđāļāļĢāļāļīāđāļ āđāļĄāļ, āđāļāļāļđāđāļĨāđāļāļāļĢāđ, āđāļāđāļāđāļāļāđāļāđāļĢāļāļąāļ āļāļīāļĄāđāļāđāļāđāļāļāļĢāđ, āļĢāđāļāļĒāļĨāļ°āļāļāļāļāļąāļ§āļĒāļēāļāļĩāđāļĄāļĩāļāļāļēāļāđāļĨāđāļāļāļ§āđāļē 5 āđāļĄāļāļĢāļāļ, āļāļąāļĨāļāļđāļāļēāļĄāļāļĨ āļāļąāļĨāđāļāļAbstract Objective: To study effects of 0.9 % sodium chloride solution (NaCl) on the performance of a PARI VELOXÂŪ vibrating-mesh nebuliser (total mass output and output efficiency of nebulised fluids) compared to the ion-free water, and to determine aerodynamic properties of nebulised salbutamol sulfate using the Next Generation Impactor (NGI) to simulate respiratory tract. Method: Certain volumes of fluid filled in the PARI VELOXÂŪ nebuliser was nebulised to dryness. Dryness time, total mass output, and output efficiency were recorded. To determine the properties of nebulised salbutamol sulfate, the NGI was operated at 15 L/min with 2.5 mL of salbutamol sulfate solution with 0.9% NaCl. After 2 min 30 sec of nebulisation, the samples were recovered and assayed by a high performance liquid chromatography (HPLC) analysis for aerosolization key parameters. Results: The aerosol mass output and output efficiency were significantly higher when halide ion was included (P-value < 0.05). This may be because halide suppresses the electrostatic charge in water, resulting in less liquid adherence to the surfaces of mesh membrane and more droplets. This new nebuliser generated aerosols of salbutamol sulfate with 0.9% NaCl with desired pulmonary delivery characteristics such as the mass median aerodynamic diameter of 3.95 Âĩm and high fine particle fraction (44% particles with < 5-Âĩm diameter). Conclusion: The properties of nebulised salbutamol sulfate with the addition of 0.9% NaCl emitted from PARI VELOXÂŪ vibrating-mesh nebulisers are desirable for pulmonary delivery in terms of aerodynamic particle size distribution. The performance of this device may be proposed as particularly suitable nebuliser for the delivery of various novel formulations. Keywords: vibrating-mesh nebuliser, Next Generation Impactor (NGI), fine particle fraction (FPF), salbutamol sulfate
Preparation and characterization of curcumin-loaded liposomes for delivery to the lungs
Curcumin-loaded liposomes comprising dipalmitoylphosphatidylcholine, cholesterol, and dioleoylphosphatidylethanolamine (72:8:20 mole ratio) were prepared by the thin-film hydration method, followed by probe sonication to achieve a mean diameter <200 nm. The properties of aerosols generated using from 4 mL optimized liposome preparation filled into an air-jet nebulizer were determined using a Fast Screening Impactor (FSI) pre-cooled at 2â8°C for at least 90 min at 15 L/min. Curcumin recovered from the impactor and nebulizer was quantified using a validated high-performance liquid chromatography method. Overall, 2.5% w/w curcumin-loaded liposomes was the optimal formulation based on the maximum encapsulation efficiency of approximately 87% and mean hydrodynamic diameter of 97 nm. This chosen curcumin concentration was effectively aerosolized with a fine particle fraction of 53.25%, and a fine particle dose of 53 Âĩg being deposited on the lower stage of the FSI (cutoff diameter 5 Âĩm)
Development and characterisation of nanocarriers system of hydrophobic drugs for pulmonary delivery
Background: The bioavailability of BCS class II drugs used in non-small cell lung cancer (NSCLC) treatment is limited by low water solubility. Also, current therapies for NSCLC cause systemic side effects and sub-therapeutic levels of drugs at the target sites. Colloidal systems administered by the pulmonary route may overcome these problems. Method: A genistein-mPEG conjugate was synthesised and characterised for delivering erlotinib or curcumin in micelles. Liposomes co-loaded with genistein and erlotinib were developed as an alternative formulation approach and studies using DSC and HPLC analysis. The aerosol properties of micelles and liposomes were measured using the Next Generation Impactor (NGI). The Fast Screening Impactor (FSI) was investigated as an alternative to the NGI for aerosol characterisation of nebulised liposomes. Three parameters (nebuliser types, impactor operating conditions and liposome size reduction methods) were studied using the FSI. Results: Successful conjugation was confirmed by FT-IR, NMR and MS. Curcumin loading into conjugate micelles had mean size < 200nm, with â 50% encapsulation efficiency (EE). However, the genistein conjugate was not appropriate for erlotinib delivery, having low EE (<3%). For liposomes, the mean size was â130 nm, with 10% EE (erlotinib) and 100% EE (genistein). DSC results showed incorporation of both drugs into the bilayer, giving a broadening of the main phase transition of DPPC with a decreased main phase temperature. The air-jet nebuliser was superior to the vibrating-mesh device in terms of significantly higher fine particle dose (FPD) and fine particle fraction (FPF). The FSI (5Âą 3 šC), with modification operated at 15 L/min, was found to be simple to use and labour-saving for simple aerosol characterisation, giving comparable results to the NGI for FPD and FPF. Extruded liposomes showed greater size stability than sonicated vesicles during preparation and nebulisation. Conclusions: Optimised micelles and liposomes with desired mean size and drug entrapments have the potential for nebuliser delivery of genistein, erlotinib and curcumin, and may be suitable for delivering other hydrophobic drugs
āļāļēāļĢāđāļāļĢāļĩāļĒāļāđāļāļĩāļĒāļāđāļāļĨāļđāļāļĨāļąāļŠÂŪ āļāļąāļāļāļāļĨāļīāđāļĄāļāļĢāđāļāļ·āđāļ āđāļāļāļēāļĢāđāļāļĢāļĩāļĒāļĄāļāļāļĨāļīāđāļĄāļāļĢāļīāļāđāļĄāđāļāļĨāļĨāđ āļŠāļģāļŦāļĢāļąāļāļāļģāļŠāđāļāđāļāļāļĢāđāđāļĨāļāļīāļāļīāļ Comparison of SoluplusÂŪ with Other Polymers to Form Polymeric Micelles for Erlotinib Delivery
āļāļāļāļąāļāļĒāđāļ āļ§āļąāļāļāļļāļāļĢāļ°āļŠāļāļāđ: āđāļāļ·āđāļāđāļāļĢāļĩāļĒāļāđāļāļĩāļĒāļāļāļļāļāļŠāļĄāļāļąāļāļīāđāļĄāđāļāļĨāļĨāđāļāļāļāļĒāļēāđāļāļāļĢāđāđāļĨāļāļīāļāļīāļāļāļĩāđāđāļāļĢāļĩāļĒāļĄāļāļēāļāļāļāļĨāļīāđāļĄāļāļĢāđāđāļāļĨāļđāļāļĨāļąāļŠ āđāļĨāļ°āļāļāļĨāļīāđāļĄāļāļĢāđāļāļ·āđāļāļāļĩāļ 4 āļāļāļīāļ āļāđāļāļāļāļēāļĢāļāļąāđāļāļŠāļđāļāļĢāļāļģāļĢāļąāļāđāļāļ·āđāļāļāļģāļŠāđāļāļĒāļēāļāļēāļāđāļāđāļēāļāļēāļāļāļāļ āļ§āļīāļāļĩāļāļēāļĢāļĻāļķāļāļĐāļē: āļāļēāļĢāļāļąāļāļāļēāļĢāļ°āļāļāđāļĄāđāļāļĨāļĨāđāđāļāļĢāļ°āļāļąāļāļāļēāđāļāđāļĄāļāļĢ āđāļāļ·āđāļāļāļģāļŠāđāļāđāļāļāļĢāđāđāļĨāļāļīāļāļīāļāļāđāļ§āļĒāļāļāļĨāļīāđāļĄāļāļĢāđ 5 āļāļāļīāļ āđāļāđāđāļāđ polyvinyl caprolactame-polyvinyl acetate- polyethylene glycol graft copolymer (SoluplusÃ), macrogal 15 hydroxysterate (Kolliphorà HS 15), poloxamer 188 (Lutrolà micro 68), D-a-tocopherol polyethylene glycol 1000 succinate (TPGS) āđāļĨāļ° polyethylene glycol 5000âdistearoylphosphatidylethanolamine (mPEG 5000- DSPE) āđāļāļĢāļĩāļĒāļĄāđāļāļĒāļ§āļīāļāļĩāļāļīāļāļāļīāļĨāđāļĄāđāļŪāđāļāļĢāļāļąāđāļ āļāļļāļāļŠāļđāļāļĢāļāļģāļĢāļąāļāļāļĩāđāđāļāļĢāļĩāļĒāļĄāļāļķāđāļāļāļēāļāļŠāļąāļāļŠāđāļ§āļāđāļāļĒāļĄāļ§āļĨāļāļāļāļĒāļēāļāđāļāļāļāļĨāļīāđāļĄāļāļĢāđ āđāļāđāļēāļāļąāļ 1:20 āļāļ°āļāļđāļāļāļĢāļ°āđāļĄāļīāļāļāļļāļāļŠāļĄāļāļąāļāļīāļāđāļēāļ āđ āļāļ·āļ āļāļāļēāļāđāļĨāļ°āļāļĢāļ°āļāļļāļāļāļāđāļĄāđāļāļĨāļĨāđ āļāļĨāļāļāļāļāļāļĢāļ°āļŠāļīāļāļāļīāļ āļēāļāđāļāļāļēāļĢāļāļąāļāđāļāđāļāđāļāļāļĢāđāđāļĨāļāļīāļāļīāļ āđāļāļ·āđāļāļāļĢāļ°āđāļĄāļīāļāļ§āđāļēāļāļāļĨāļīāđāļĄāļāļĢāđāļāļāļīāļāđāļāļĄāļĩāļāļ§āļēāļĄāđāļŦāļĄāļēāļ°āļŠāļĄāđāļāļāļēāļĢāļāļģāļŠāđāļāļāļąāļ§āļĒāļēāļāļąāļāļāļĨāđāļēāļ§āļĄāļēāļāļāļĩāđāļŠāļļāļ āļāļĨāļāļēāļĢāļĻāļķāļāļĐāļē: āđāļāļĨāļđāļāļĨāļąāļŠāļĄāļĩāļāļĢāļ°āļŠāļīāļāļāļīāļ āļēāļāđāļāļāļēāļĢāļāļąāļāđāļāđāļāđāļāļāļĢāđāđāļĨāļāļīāļāļīāļāļĄāļēāļāļāļĩāđāļŠāļļāļ āđāļĄāļ·āđāļāđāļāļĩāļĒāļāļāļąāļāļāļāļĨāļīāđāļĄāļāļĢāđāļāļĩāļ 4 āļāļāļīāļ āđāļāļĒāļāļļāļāļŠāļĄāļāļąāļāļīāļāļāļāļĢāļ°āļāļāļāļģāļŠāđāļāļĒāļēāļĄāļĩāļāļ§āļēāļĄāđāļŦāļĄāļēāļ°āļŠāļĄāļāđāļāļāļēāļĢāļāļģāļŠāđāļāļāļēāļāļāļāļ āļāļ·āļ āļāļāļēāļāļāļāļāđāļĄāđāļāļĨāļĨāđāļāļĩāđāđāļĨāđāļāļāļ§āđāļē 200 āļāļēāđāļāđāļĄāļāļĢ āđāļĨāļ°āļāļēāļĢāļāļĢāļ°āļāļēāļĒāļāļāļāļāļāļēāļāļāļāļļāļ āļēāļāļāđāļāļĒāļāļ§āđāļē 0.1 āļāļēāļāđāļāļĨāļāļĨāđāļāđāļ§āđāļēāļāļĢāļ°āļŠāļīāļāļāļīāļ āļēāļāđāļāļāļēāļĢāļāļąāļāđāļāđāļāļĒāļēāđāļāļĢāļāļąāļāļāļĢāļāļāļąāļāļāļ·āđāļāļāļĩāđ/āļāļĢāļīāļĄāļēāļāļĢāļāļāļāļŠāđāļ§āļāļāļĩāđāđāļĄāđāļāļāļāļāđāļģāļāļāļāļāļāļĨāļīāđāļĄāļāļĢāđ āđāļāļĒāļāļĢāļīāđāļ§āļāļāļąāļāļāļĨāđāļēāļ§āļāļ°āđāļāļīāđāļĄāđāļāļāļēāļŠāđāļāļāļēāļĢāļāļĩāđāļāļąāļ§āļĒāļēāļāļ°āđāļāđāļēāđāļāļĢāļ āđāļĨāļ°/āļŦāļĢāļ·āļ āļĨāļ°āļĨāļēāļĒāđāļāđāļāđāļāļ·āđāļāđāļāļĩāļĒāļ§āļāļąāļāļāļąāļāļāļāļĨāļīāđāļĄāļāļĢāđ āļāļāļāļāļēāļāļāļĩāđāļāļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļāđāļāļāļēāļĢāđāļāļĢāļāđāļāđāļēāđāļāđāļāļĢāļ°āļāļāđāļĄāđāļāļĨāļĨāđāļāļāļāđāļāļāļĢāđāđāļĨāļāļīāļāļīāļāļāļđāļāļāļģāļāļąāļ āļāļąāļāđāļāļ·āđāļāļāļĄāļēāļāļēāļāļāļ§āļēāļĄāđāļāļ°āļāļ°āļāļāļāđāļāļĢāļāļŠāļĢāđāļēāļāļāļĩāđāđāļāđāļāļŠāļēāļĒāđāļŪāđāļāļĢāļāļēāļĢāđāļāļāļāđāļĨāļ°āļāļąāļāļāļ°āļŠāļēāļĄāļāļĩāđāļāļīāļāļāļąāļāļ§āļāđāļāļāļāļĩāļ āļŠāļĢāļļāļ: āđāļāļĨāļđāļāļĨāļąāļŠāļāļēāļāļāļģāđāļāļāļąāļāļāļēāđāļāđāļāļĢāļ°āļāļāļāļģāļŠāđāļāđāļāļāļĢāđāđāļĨāļāļīāļāļīāļāđāļāļ·āđāļāļāļģāļŠāđāļāļĒāļēāļāļēāļāļāļāļ āđāļĨāļ°āļāļēāļāđāļāđāđāļāđāļāļāļāļĨāļīāđāļĄāļāļĢāđāļŦāļĨāļąāļāđāļāļāļēāļĢāļāļģāļŠāđāļāļĒāļēāļāļĩāđāļĨāļ°āļĨāļēāļĒāļāđāļģāļĒāļēāļāļāļąāļ§āļāļ·āđāļ āđ āđāļāđāļāļģāļŠāļģāļāļąāļ: āđāļāļĨāļđāļāļĨāļąāļŠ, āđāļāļāļĢāđāđāļĨāļāļīāļāļīāļ, āļāļāļĨāļīāđāļĄāļāļĢāļīāļ āđāļĄāđāļāļĨāļĨāđ Abstract Objective: To compare micellar properties of erlotinib by using Soluplusà and 4 other polymers to achieve desired characteristics for pulmonary delivery. Method: Erlotinib-incorporated polymeric micelles were prepared from five common polymers; namely, polyvinyl caprolactame- polyvinyl acetate- polyethylene glycol graft copolymer (SoluplusÃ), macrogal 15 hydroxysterate (Kolliphorà HS 15), poloxamer 188 (Lutrolà micro 68), D-a-tocopherol polyethylene glycol 1000 succinate (TPGS) and polyethylene glycol 5000âdistearoylphosphatidyl ethanolamine (mPEG 5000- DSPE) using thin-film hydration method, with drug:polymer mass ratio of 1:20. All formulations were then characterised for their hydrodynamic diameter, zeta potential and encapsulation efficiency to investigate the appropriate polymer for erlotinib delivery. Results: The highest encapsulation efficiency was from Soluplusà with desirable hydrodynamic diameter smaller than 200 nm and a PDI value of less than 0.1. It might be assumed that more polymer chains or more hydrophobic groups provide more entrapment sites leading to increased solubilisation and thus the incorporation of erlotinib. Steric hindrances of two branches aliphatic chain and three benzene rings attached to alkyne of erlotinib play an important role in encapsulation efficiency, resulting in the difficulty to be packed into other alternative polymers. Conclusion: Based on the results of characterisation of erlotinib-loaded polymeric micelles, Soluplusà might be considered as a promising polymer for producing nanocarriers for nebulised delivery, and may be applicable for other hydrophobic drugs. Keywords: soluplus, erlotinib, polymeric micelles
ïŧŋComparison of efficacies of full and abbreviated cascade impactors in aerosol characterization of nebulized salbutamol sulfate produced by a jet nebulizer
The properties of aerosols generated from salbutamol sulfate solution (1 mg/mL) using an air-jet nebulizer were evaluated using Next Generation Impactor (NGI), a full cascade impactor, and Fast Screening Impactor (FSI), an abbreviated impactor measurement (AIM). Both impactors were operated under the same experimental conditions. The samples were recovered and assayed using validated high performance liquid chromatography (HPLC). The study investigated AIM-Human Respiratory Tract (HRT) concept by comparing key parameters of aerosolization i.e. fine particle dose (FPD) and fine particle fraction (FPF) measured using FSI, with NGI as baseline. The results showed that FSI yielded different but comparable values for FPD and FPF, indicating that it is alternative impactor to NGI. Despite the fact that FSI could not replace NGI, it may be used as an alternative impactor for simple and rapid aerosol characterization of formulations in some pharmaceutical development and quality control processes
Comparison between air-jet and vibrating-mesh nebulizers in the delivery of nebulized salbutamol sulfate determined using an abbreviated impactor
Purpose: To investigate the aerodynamic properties of nebulized droplets from nebulizers for delivery of salbutamol sulfate. Methods: Drug deposits were collected from fast screening impactor (FSI). Parameters of aerosolization such as dryness time and salbutamol sulfate characteristics were determined using chilled FSI at a flow velocity of 15 L/min, with salbutamol sulfate solution nebulized to dryness. An optimized HPLC procedure was used to analyze the deposited salbutamol sulfate across the FSI. Parameters comprising mass balance, FPD and FPF were determined. Results: Statistical analysis showed that the performance of vibrating-mesh was more efficient than that of air-jet device, as depicted in significantly higher values FPF of aerosolized droplets (60 and 40 %, respectively; p < 0.05). Conclusion: The performance of aerosol generation using vibrating-mesh was more superior to that of air-jet nebulizer. However, there is need for further investigations on various physicochemical properties of nebulizer fluid as well as improvement in percentage FPF