53 research outputs found

    Numerical modeling of non-Newtonian fluid flow in fractures and porous media

    Get PDF
    Non-Newtonian fluids having Bingham or power-law rheology are common in many applications within drilling and reservoir engineering. Examples of such fluids are drilling muds, foams, heavy oil, hydraulic-fracturing and other stimulation fluids, and cement slurries. Despite the importance of non-Newtonian rheology, it is rarely used in reservoir simulators and fracture flow simulations. We study two types of non-Newtonian rheology: the truncated power-law (Ostwald-de Waele) fluid and the Bingham fluid. For either of the two types of non-Newtonian rheology, we construct relationships between the superficial fluid velocity and the pressure gradient in fractures and porous media. The Bingham fluid is regularized by means of Papanastasiou-type regularization for porous media and by means of a simple hyperbolic function for fracture flow. Approximation by Taylor expansion is used to evaluate the fluid velocity for small pressure gradients to reduce rounding errors. We report simulations of flow in rough-walled fractures for different rheologies and study the effect of fluid parameters on the flow channelization in rough-walled fractures. This effect is known from previous studies. We demonstrate how rheologies on different domains can be included in a fully-unstructured reservoir simulation that incorporates discrete fracture modeling (DFM). The above formulation was implemented in the open-source MATLAB Reservoir Simulation Toolbox (MRST), which uses fully implicit discretization on general polyhedral grids, including industry standard grids with DFM. This robust implementation is an important step towards hydro-mechanically coupled simulation of hydraulic fracturing with realistic non-Newtonian fluid rheology since most hydraulic fracturing models implemented so far make use of oversimplified rheological models (e.g., Newtonian or pure power-law).acceptedVersio

    Vertically averaged equations with variable density for CO2 flow in porous media

    Get PDF
    Carbon capture and storage has been proposed as a viable option to reduce CO 2 emissions. Geological storage of CO 2 where the gas is injected into geological formations for practically indefinite storage, is an integral part of this strategy. Mathematical models and numerical simulations are important tools to better understand the processes taking place underground during and after injection. Due to the very large spatial and temporal scales involved, commercial 3D-based simulators for the petroleum industry quickly become impractical for answering questions related to the long-term fate of injected CO 2 . There is an interest in developing simplified modeling tools that are effective for this type of problem. One approach investigated in recent years is the use of upscaled models based on the assumption of vertical equilibrium (VE). Under this assumption, the simulation problem is essentially reduced from 3D to 2D, allowing much larger models to be considered at the same computational cost. So far, most work on VE models for CO 2 storage has either assumed incompressible CO 2 or only permitted lateral variations in CO 2 density (semi-compressible). In the present work, we propose a way to fully include variable CO 2 density within the VE framework, making it possible to also model vertical density changes. We derive the fine-scale and upscaled equations involved and investigate the resulting effects. In addition, we compare incompressible, semi-compressible, and fully compressible CO 2 flow for some model scenarios, using an in-house, fully-implicit numerical code based on automatic differentiation, implemented using the MATLAB reservoir simulation toolkit

    An implicit local time-stepping method based on cell reordering for multiphase flow in porous media

    Get PDF
    We discuss how to introduce local time-step refinements in a sequential implicit method for multiphase flow in porous media. Our approach relies heavily on causality-based optimal ordering, which implies that cells can be ordered according to total fluxes after the pressure field has been computed, leaving the transport problem as a sequence of ordinary differential equations, which can be solved cell-by-cell or block-by-block. The method is suitable for arbitrary local time steps and grids, is mass-conservative, and reduces to the standard implicit upwind finite-volume method in the case of equal time steps in adjacent cells. The method is validated by a series of numerical simulations. We discuss various strategies for selecting local time steps and demonstrate the efficiency of the method and several of these strategies by through a series of numerical examples.publishedVersio

    Constraint Preserving Mixers for the Quantum Approximate Optimization Algorithm

    Get PDF
    The quantum approximate optimization algorithm/quantum alternating operator ansatz (QAOA) is a heuristic to find approximate solutions of combinatorial optimization problems. Most of the literature is limited to quadratic problems without constraints. However, many practically relevant optimization problems do have (hard) constraints that need to be fulfilled. In this article, we present a framework for constructing mixing operators that restrict the evolution to a subspace of the full Hilbert space given by these constraints. We generalize the “XY”-mixer designed to preserve the subspace of “one-hot” states to the general case of subspaces given by a number of computational basis states. We expose the underlying mathematical structure which reveals more of how mixers work and how one can minimize their cost in terms of the number of CX gates, particularly when Trotterization is taken into account. Our analysis also leads to valid Trotterizations for an “XY”-mixer with fewer CX gates than is known to date. In view of practical implementations, we also describe algorithms for efficient decomposition into basis gates. Several examples of more general cases are presented and analyzed.publishedVersio

    Effective interactions and large-scale diagonalization for quantum dots

    Full text link
    The widely used large-scale diagonalization method using harmonic oscillator basis functions (an instance of the Rayleigh-Ritz method, also called a spectral method, configuration-interaction method, or ``exact diagonalization'' method) is systematically analyzed using results for the convergence of Hermite function series. We apply this theory to a Hamiltonian for a one-dimensional model of a quantum dot. The method is shown to converge slowly, and the non-smooth character of the interaction potential is identified as the main problem with the chosen basis, while on the other hand its important advantages are pointed out. An effective interaction obtained by a similarity transformation is proposed for improving the convergence of the diagonalization scheme, and numerical experiments are performed to demonstrate the improvement. Generalizations to more particles and dimensions are discussed.Comment: 7 figures, submitted to Physical Review B Single reference error fixe

    Field-case simulation of CO2-plume migration using vertical-equilibrium models

    Get PDF
    When injected in deep saline aquifers, CO2 moves radially away from the injection well and progressively higher in the formation because of buoyancy forces. Analyzes have shown that after the injection period, CO2 will potentially migrate over several kilometers in the horizontal direction but only tens of meters in the vertical direction, limited by the aquifer caprock. Because of the large horizontal plume dimensions, three-dimensional numerical simulations of the plume migration over long periods of time are computationally intensive. Thus, to get results within a reasonable time frame, one is typically forced to use coarse meshes and long time steps which result in inaccurate results because of numerical errors in resolving the plume tip. Given the large aspect ratio between the vertical and horizontal plume dimensions, it is reasonable to approximate the CO2 migration using vertically averaged models. Such models can, in many cases, be more accurate than coarse three-dimensional computations. In particular, models based on vertical equilibrium (VE) are attractive to simulate the long-term fate of CO2 sequestered into deep saline aquifers. The reduced spatial dimensionality resulting from the vertical integration ensures that the computational performance of VE models exceeds the performance of standard three-dimensional models. Thus, VE models are suitable to study the long-time and large-scale behavior of plumes in real large-scale CO2-injection projects. We investigate the use of VE models to simulate CO2 migration in a real large-scale field case based on data from the Sleipner site in the North Sea. We discuss the potential and limitations of VE models and show how VE models can be used to give reliable estimates of long-term CO2 migration. In particular, we focus on a VE formulation that incorporates the aquifer geometry and heterogeneity, and that considers the effects of hydrodynamic and residual trapping. We compare the results of VE simulations with standard reservoir simulation tools on test cases and discuss their advantages and limitations and show how, provided that certain conditions are met, they can be used to give reliable estimates of long-term CO2 migration.publishedVersio

    Collective excitations of trapped Bose condensates in the energy and time domains

    Full text link
    A time-dependent method for calculating the collective excitation frequencies and densities of a trapped, inhomogeneous Bose-Einstein condensate with circulation is presented. The results are compared with time-independent solutions of the Bogoliubov-deGennes equations. The method is based on time-dependent linear-response theory combined with spectral analysis of moments of the excitation modes of interest. The technique is straightforward to apply, is extremely efficient in our implementation with parallel FFT methods, and produces highly accurate results. The method is suitable for general trap geometries, condensate flows and condensates permeated with vortex structures.Comment: 6 pages, 3 figures small typos fixe
    • …
    corecore