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Abstract Carbon capture and storage has been proposed as a viable option to reduce CO2

emissions. Geological storage of CO2 where the gas is injected into geological formations
for practically indefinite storage, is an integral part of this strategy. Mathematical models
and numerical simulations are important tools to better understand the processes taking
place underground during and after injection. Due to the very large spatial and temporal
scales involved, commercial 3D-based simulators for the petroleum industry quickly become
impractical for answering questions related to the long-term fate of injected CO2. There is
an interest in developing simplified modeling tools that are effective for this type of prob-
lem. One approach investigated in recent years is the use of upscaled models based on the
assumption of vertical equilibrium (VE). Under this assumption, the simulation problem is
essentially reduced from 3D to 2D, allowing much larger models to be considered at the same
computational cost. So far, most work on VE models for CO2 storage has either assumed
incompressible CO2 or only permitted lateral variations in CO2 density (semi-compressible).
In the present work, we propose a way to fully include variable CO2 density within the VE
framework, making it possible to also model vertical density changes. We derive the fine-scale
and upscaled equations involved and investigate the resulting effects. In addition, we compare
incompressible, semi-compressible, and fully compressible CO2 flow for some model sce-
narios, using an in-house, fully-implicit numerical code based on automatic differentiation,
implemented using the MATLAB reservoir simulation toolkit.
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1 Introduction

Carbon capture and storage (CCS) is considered an attractive emission reduction strategy
as it is compatible with current energy infrastructure and much of the required experience
already exists. The potential for underground storage (primarily in saline aquifers or depleted
oil and gas fields) is significant, and IPCC estimates that CCS could contribute 15–55 %
of cumulative mitigation efforts worldwide until 2100 (according to most scenarios) (IPCC
2005). It is hoped that CCS as a technology could provide a temporary bridge between a fossil
fuel-based economy and a future economy based mainly on renewable energy. Mitigation of
risk is one focus of current research, with leakage being the main concern. Current experience
and models suggest that appropriately selected and managed reservoirs will retain a large
percentage of injected CO2 (IPCC 2005). However, the injected volumes in a meaningful
emissions reduction scenario would be on an unprecedented scale.

Numerical simulators provide a key tool for better understanding the properties of potential
storage sites, assessing sensitivities to unknown parameters, interpreting observed evolution
over time, and providing long-term projections of the ultimate fate of injected CO2. Present-
day commercial simulators (CMG 2009; Schlumberger 2010) developed for the oil and gas
industry can be adapted to model CO2 geological storage scenarios, but require prohibitively
long computational times when applied to many problems relevant to long-term storage of
CO2, due to the large spatial and temporal scales involved (Nordbotten and Celia 2012).
Simulators developed by universities and institutes, such as CODE_BRIGHT (Olivella et
al. 1996), DUMUX (Flemisch et al. 2007), TOUGH2 (Pruess 2004), IPARS (Wheeler et al.
2001), and others, also face this problem. This has led to recent efforts in developing fast
new tools designed to address the very large scales associated with CO2 storage modeling,
while respecting the relevant physical and chemical aspects of the system.

As part of this ongoing effort, models based on the assumption of vertical equilibrium
(VE) have regained attention in the context of CO2 storage (Nordbotten and Celia 2012).
Under this assumption, the injected CO2 and resident brine are considered to separate quick
enough into distinct layers that the process can be considered instantaneous at the time scales
relevant for the study of lateral migration. Mathematical models based on this assumption
have a long history and were initially investigated for purposes such as oil extraction and water
management (Coats et al. 1971; Dietz 1953). The assumption of vertical equilibrium is often
applicable given the extreme aspect ratio of a typical reservoir, where the horizontal extent
is measured in tens or even hundreds of kilometers whereas the vertical extent is typically
no more than a couple of hundred meters. A formal analysis carried out in (Yortsos 1995),
expresses the validity of the VE assumption in terms of the geometrical aspect ratio and ratio
between horizontal and vertical permeability. The assumption of vertical equilibrium effec-
tively reduces the model from three dimensions (3D) to two dimensions (2D). Together with
selective inclusion of physical effects (e.g., hysteresis, capillary fringe, rock heterogeneity),
this represents a significant reduction in computational requirements for similar complexity
solved with a 3D code.

Multiple comparison studies have shown that results provided by VE modeling compare
well with those obtained from full 3D simulations in many scenarios (Class et al. 2009;
Ligaarden and Nilsen 2010; Nilsen et al. 2011; Nordbotten et al. 2012). In recent years, VE
models for CO2 storage have been a subject of active research. For simplified cases, ana-
lytic solutions have been proposed (Dentz and Tartakovsky 2009; Nordbotten et al. 2005).
Numerical solutions can be obtained for more general cases, allowing for the inclusion of,
e.g., reservoir heterogeneity in the model. The VE-modeling framework has been extended
to include several physical phenomena that affect two-phase flow, such as capillarity (Nord-
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botten and Dahle 2011), dissolution and convective mixing (Gasda et al. 2011a, b), leakage
through caprock (Nordbotten and Celia 2012), and caprock rugosity (Gasda et al. 2013, 2012).
In situations with significant vertical flow, such as in the vicinity of an active or leaky well,
the assumption of vertical equilibrium is no longer valid and VE models cannot be applied
by themselves. However, by combining local analytic solutions with a global numeric model,
the effect of multiple leaky wells has also been handled in a VE setting (Gasda et al. 2009).

Whereas most work on VE models for CO2 storage so far has considered constant CO2

density, there has also been some work on the inclusion of compressibility effects at the
large scale (Vilarrasa et al. 2010) and the wellbore scale (Mijic et al. 2014). Villarasa et al.
proposed a method to include variable CO2 density (and viscosity) in an analytic VE model
(Vilarrasa et al. 2010). Under this approach, the density of injected CO2 is allowed to vary in
time, while remaining constant in space. In (Vilarrasa et al. 2013a), a semi-analytical model
is proposed for vertical CO2 injection, in which CO2 density varies both in space and time.
This model addresses the injection phase on an idealized domain, with several additional
simplifying assumptions. The model proposed in (Gasda et al. 2009) includes horizontal
variations in density, but does not take into account vertical variability. The inclusion of
horizontal variations makes it possible to model the significant changes in CO2 density
arising from the large variations in pressure during CO2 injection, as well as the gradual
changes in the hydrostatic pressure field that occur in a large, sloping reservoir. On the other
hand, density differences due to pressure and temperature changes in the vertical direction
are not included. Although such changes are assumed to be small in most cases, it is not clear
whether they could always be neglected.

In this paper, we develop a mathematically consistent model for variable CO2 density in VE
models. We derive the VE equations for two-phase flow with full compressibility and show
how the CO2 density dependence on depth can be separately factored out as scalar functions
in the resulting equations. We discuss how these functions can be practically computed or
estimated for the purposes of numerical simulation. Moreover, we investigate the range of
pressures and temperature gradients that are likely to occur in CO2 storage sites, and try to
identify conditions for which vertical density changes may have significant impacts. Finally,
we compare a fully compressible, a semi-compressible (i.e., horizontally compressible), and
an incompressible VE model on some simulated test cases designed to demonstrate typical
scenarios for CO2 storage in which density variation could be important.

2 Model Description

2.1 Physical System

We consider a scenario with CO2 injected into a saline aquifer. The aquifer is confined on top
and below by formations of very low permeability. The confining formation on top is called
the caprock. While the caprock can have significant local topographical variation, it is still
assumed to be reasonably flat on the large scale. The lower confining formation is simply
referred to as the bottom.

The pore space of the aquifer is initially filled with brine. This brine is gradually displaced
by CO2 during and after injection. Although pressures and temperatures in the model may
vary, the site would normally be chosen for conditions that allows injected CO2 to remain
in a dense phase. In any case, except in very rare circumstances (Bachu 2003), the density
of injected CO2 would be significantly lower than the density of brine, resulting in strong
buoyancy forces acting on the injected CO2 plume. Gravity and viscous forces will drive the
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CO2 plume to spread out and move upward where possible. If the aquifer is sloping, this
would lead the plume to slowly migrate uphill, constrained by the local shape of the aquifer.
Given enough time, this migration can cover a large range in depth and potentially lead to
significant density changes within the plume.

2.1.1 VE Assumptions and Upscaling

The aim of a VE model is to represent a 3D aquifer of large horizontal extent on a 2D
plane by solving integrated 2D governing equations. The development of the integrated or
upscaled model relies on the underlying assumption of vertical equilibrium, i.e., zero flow
perpendicular to the aquifer plane, which must hold at the spatial and temporal scales of the
system of interest. Vertical equilibrium is established under two related conditions, a large
aspect ratio and gravity–capillary equilibrium. Previous work has investigated the validity of
these assumptions with regards to the spatial (Yortsos 1995) and temporal (Court et al. 2012)
scales appropriate for CO2 storage. The assumption of vertical equilibrium can be considered
a special case of the more general Dupuit assumption, which considers a pressure field that
leads to no flow across the confining (top, bottom) boundaries (Bear 1988).

The aspect ratio of the system is related to the horizontal versus vertical extent of the
aquifer of interest. Whereas the horizontal extent of the aquifer can be very large (tens to
hundreds of kilometers), the thickness is usually limited to a couple of hundred meters or less.
We can therefore think of its global shape as a thin and flat sheet, which may be horizontal
or inclined. Since the lateral extent of aquifers considered for CO2 storage is very large
compared to the thickness (Nordbotten and Celia 2012), we expect any vertical movement
to be negligibly small compared to the lateral flow velocities.

The gravity segregation process also should occur on very short time scales compared to
the characteristic time of the analysis in order for vertical equilibrium to hold. Supercritical
CO2 and brine will tend to separate quickly due to buoyancy, with the CO2 rising upward (van
der Meer 1993). Capillary forces will also act on the plume, creating a two-phase transition
zone at equilibrium, known as a capillary fringe. If gravity forces are balanced with capillary
forces, then the CO2 phase can be represented as a plume collected at the top of the aquifer,
held in place by the caprock (Nordbotten and Celia 2012). In the absence of strong capillarity,
an interface can then be defined between the part of the aquifer occupied by brine and the
part occupied by CO2 referred to as the brine–CO2 interface.

Given the validity of the above assumptions, the vertical dimension can be eliminated by
integration and all upscaled variables either represent (weighted) averages across the vertical
direction (densities, porosities, saturation), or values at some reference depth (pressure). The
resulting, upscaled model is called a VE model.

2.1.2 Other Simplifying Assumptions

The VE framework is capable of modeling various physical effects such as mutual solubility,
capillary fringe, hysteretic behavior, and diffuse leakage, among others. However, it should
be noted that our primary goal in this paper is to develop a VE formulation that includes
variable CO2 density in a manner fully consistent with the fine scale and to compare the
resulting model with simpler approaches. Thus, we wish to isolate the effect of CO2 density
separate from other mechanisms, which facilitates presentation and analysis of the model.
In doing so, we disregard a number of physical effects that are nevertheless important for a
complete understanding of CO2 migration. The following are the main simplifications: the
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Fig. 1 A vertical section of a part of an aquifer containing a plume of injected C O2. ζT and ζB represent the
shape of the top- and bottom-confining layers, while ζM describes the shape of the brine–CO2 interface. H
and h denote the local height of the aquifer and the CO2 plume, while θ is the angle between the z coordinate
axis and the gravity vector g

top and bottom boundaries of the aquifer are impermeable; the rock matrix and brine phase
are incompressible; negligible capillary fringe, viscosity of both fluids is constant; no mutual
solubility; zero residual saturations; and thermal equilibrium between fluids and rock matrix
at all times.

Notably, CO2 viscosity is kept constant in the model development and all test examples,
even though we are well aware that viscosity changes with temperature and pressure are
as important as density changes in real systems. The main purpose of ignoring viscosity
variations is to focus on handling of vertical variation of CO2 density when upscaling the 3D
compressible model, a process that has some important implications for the vertical pressure
profile and subsequent integration since pressure affects density and vice versa (as discussed
in the model derivation in Sect. 2.2). This type of coupling with pressure does not occur with
viscosity variation, which is therefore of less interest mathematically. To be consistent, we
ignore viscosity variation throughout the subsequent test examples, despite the fact that this
may lead to unrealistic combinations of fluid properties.

We emphasize that the simplifications made here can be easily included, along with vari-
able CO2 density and viscosity, in a more general VE model. Some such models have recently
been implemented using the CO2 module of the open-source MATLAB Reservoir Simulation
Toolbox (Lie et al. 2012; MRST 2014; SINTEF ICT 2014), as demonstrated in several recent
publications (Andersen et al. 2014; Nilsen et al. 2014a, b, c).

2.1.3 Coordinate System

We define a coordinate system associated with the aquifer, where the x and y coordinate
axes lie in the aquifer plane aligned with the principal flow direction, and the z axis is
perpendicular to it, directed from the top (caprock) toward the bottom. The shapes of the
caprock and bottom surfaces are described, respectively, by the functions ζT and ζB , which
each associate a depth value (z) to each pair of (x, y) values. Likewise, the shape of the
brine–CO2 interface is described by the function ζM . Since we allow the aquifer to be sloped,
the axes of our coordinate system form an angle, θ , with the true horizontal and vertical
directions (c.f. Fig. 1). The unity vectors along the axes are written ex , ey , and ez . We write
the coordinate tuple x = (x, y, z), and its first two components x|| = (x, y). Moreover,
we define the unity vector e|| , which lies in the (x, y) plane and indicates the normalized
projection of the true vertical direction onto this plane. As such, the gravity vector, g, and
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the thermal gradient vector, G, both of which are directed true vertically downward, can be
written in our coordinate system as follows:

g = g|| e|| + g⊥ ez

G = G || e|| + G⊥ ez
(1)

where g|| = ||g|| sin θ , g⊥ = ||g|| cos θ , and similar for G || and G⊥ with respect to G. From
now on, we will use the word vertical to refer to the direction specified by ez , and lateral
for directions in the (x, y) plane. As the temperature gradient G may have both a vertical
and lateral component in our inclined coordinate system, temperature at a given point will
depend both on depth z and lateral position (x, y). Given a reference temperature T0 at some
reference point x0 = (x0, y0, z0), the expression for temperature T at any other point x
becomes

T (x) = T0 + G · (x − x0)

= T0 + G ||e|| · (x|| − x||0)+ G⊥(z − z0). (2)

2.2 Derivation of the Full Variable Density Model

In this section, we derive the equations for the vertically averaged model of two-phase flow
in porous media, extended to allow for temporal and spatial variations in density. We start by
presenting the derivation and general form of the upscaled equations with variable density.
Using the general form as a basis, we proceed in the following section by showing what
specific forms these equations take when adding the assumptions of a sharp interface and
vertically homogeneous rock properties.

For multiphase immiscible flow, the mass balance equation for phase α (where α denotes
either CO2 or brine) on the fine scale can be written (Nordbotten and Celia 2012):

∂(ραφsα)

∂t
+ ∇(ραuα) = ψα. (3)

In this equation, ρ represents fluid density (ML−3), φ the porosity of the medium (–), s the
saturation (–),ψ the mass source term (ML−3T−1), and u the volumetric flux vector (LT−1).
We relate uα to phase pressure using Darcy’s law for multiphase flow:

uα = −λαk (∇ pα − ραg) (4)

Here, k is the permeability tensor (L2), pα the phase pressure (ML−1T−2), g the gravity
acceleration vector (LT−2), and λα the phase mobility (M−1LT) defined as the relative
permeability of the phase divided by phase viscosity: λα := kr,α(sα)/μα .

By integrating the fine-scale equation (3) across the thickness of the aquifer with respect
to z, we obtain an upscaled equation whose variables only depend on two spatial variables
(x, y) in addition to time t . The equation can be expressed on the following form:

HΦ
∂

∂t
(RαSα)+ ∇||Fα = Ψα (5)

The upscaled variables in this equation are H (aquifer thickness, as a function of x and y), S
(saturation), Fα (mass flux), Φ (porosity), and Rα (density). ∇|| represents the 2D gradient
operator in x and y. While we assume impermeable top and boundaries, the general case would
see additional source and sink terms appearing as a result of the integration, corresponding
to mass flow across boundaries. Details on the integration have been published in previous
literature, and a thorough explanation can be found in (Nordbotten and Celia 2012).
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With H given, the formal definitions of the upscaled variables follow from the upscaled
terms of (3):

HΦ :=
ζB∫

ζT

φ dz (6)

Fα :=
ζB∫

ζT

ραu||α dz (7)

HΦSα :=
ζB∫

ζT

φsα dz (8)

Ψα :=
ζB∫

ζT

ψα dz (9)

HΦSαRα :=
ζB∫

ζT

ραφsα dz (10)

The variable u||α in the definition of Fα above refers to the lateral components of the fine-
scale volumetric flux vector uα . Using Leibniz’ rule, it can be shown that for impermeable
top and bottom boundaries

ζB∫

ζT

∇(ραuα) dz = ∇||

ζB∫

ζT

ραu||α dz

which justifies the use of u||α in the equations above (Nordbotten and Celia 2012). By
assuming lateral and vertical components of tensor k to be independent, u|| only depends on
the lateral component of the pressure gradient ∇|| p. We can combine (7) and (4) to obtain
an expression of upscaled flux in terms of pressure:

Fα = −
ζB∫

ζT

ραk||λα(∇|| pα − ραg||e||) dz (11)

In order to compute integrals (6)–(11), we need knowledge of the involved fine-scale
quantities. Some of these (φ, k|| and ψα) are considered known inputs, whereas the others
(sα , ρα , λα and ∇|| pα) will be reconstructed from reference quantities based on specific
assumptions. Several models exist for the reconstruction of fine-scale saturations sα and
mobilities λα based on the upscaled saturation Sα . The appropriate model to choose depends
on the approximations valid for a given scenario. For the present paper we discuss a sharp-
interface model, which is valid when capillary pressure effects are negligible in the 3D model.
As for ρα and ∇|| p, we must establish how these can be represented in terms of reference
values of density and pressure, with the dependence on z separately identified.
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The assumptions of hydrostatic pressure (a consequence of VE) and constant geothermal
gradient make it possible to express fine-scale pressure and density directly as functions of
depth. This allows us to relate the integrals above with pressure and density values at some
chosen reference surface ζR . To simplify notation, we will omit the subscript α from the
presented equations from this point forward, keeping in mind that the form is the same for
both phases.

We choose to express fine-scale pressure in terms of its value at the reference surface
ζR = ζR (x||). The vertical (depth) distance from this surface to a point x = (x, y, z) is thus
z − ζR (x, y). We then have the following expression for pressure as a function of z:

p(z) = pR + g⊥

z∫

ζR

ρ(z′) dz′. (12)

Here, pR represents the phase pressure at the corresponding point on the reference surface
ζR for a given vertical column. For the numerical examples in this paper, we chose the CO2–
water interface as reference, i.e., ζR = ζM . This choice has an advantage when using the
semi-compressible VE model, as discussed in Sect. 2.4.1. Other choices of reference surface
are, however, also valid, with a similar degree of accuracy.

From (12), we see that the vertical pressure profile depends on the corresponding vertical
density profile. Since density is a function of pressure and temperature, this profile can be
obtained from the corresponding equation of state by function composition:

ρ(z) = ρ(p(z), T (z)). (13)

We here encounter a complication that arise when including variable vertical density in the VE
framework: vertical pressure and density profiles depend on each other. In order to proceed,
we compute the derivative of ρ(z)

d

dz
ρ(z) = ∂ρ

∂p

∂p

∂z
+ ∂ρ

∂T

∂T

∂z
. (14)

From (12), we see that ∂
∂z p = g⊥ρ, and from (2), that ∂

∂z T = G⊥ . The other partial derivatives
are given by the following functions of state:

β = 1

ρ

∂ρ

∂p
γ = − 1

ρ

∂ρ

∂T
. (15)

β is called the isothermal compressibility coefficient for the given substance, whereas γ is
called the isobaric coefficient of thermal expansion. (Note the negative sign in front of γ ).
Using the above, we can now further develop expression (14) into

d

dz
ρ(z) = ρ(βg⊥ρ − γG⊥) (16)

We now have ρ expressed in the form of an ordinary differential equation (ODE) that can
be solved numerically. Note that both β and γ are continuous functions of temperature and
pressure as long as one does not cross the vapor–liquid boundary.

Having established an equation to obtain ρ(z) in terms of reference values, we now
turn our attention to ∇|| p. As we see from (11), the computation of upscaled mass flux
requires knowledge of the fine-scale lateral pressure gradient ∇|| p. In the incompressible
setting, this quantity is independent of z and can simply be moved outside the integral. In
the compressible setting, however, the lateral pressure gradient varies with depth and has
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to remain in the integrand. In order to compute the integral, we therefore seek to obtain an
analytical expression of the fine-scale gradient in terms of reference quantities and depth.
This approach facilitates analysis and prevents the need of explicitly reconstructing fine-scale
pressure at each time-step in order to compute the gradient numerically.

By combining (12) with (2), and writing out the result explicitly in terms of all three
spatial coordinates (x, y, z) = (x||, z), we get

p(x||, z) = pR (x||) (17)

+g⊥

z∫

ζR (x||)

ρ
(

p(x||, z′), T0 + G ||e|| · (x|| − x||0)+ G⊥(z
′ − z0)

)
dz′. (18)

We note that the dependence of p on the spatial coordinates can be fully expressed in terms
of T and the reference quantities pR and ζR . Using the chain rule, ∇|| p can therefore be
expressed solely in terms of the lateral gradients of these quantities. By noting that ∇||T =
∇||(G ||e|| · x||) = G ||e|| , we can write

∇|| p = νp∇|| pR + νζ∇||ζR + νG G ||e|| (19)

with

νp = ∂p

∂pR

(20)

νζ = ∂p

∂ζR

(21)

νG = ∂p

∂T
. (22)

For each column, the coefficients νp, νζ , and νG are functions of z only, described by ODEs.
We can determine these ODEs by partial differentiation of hydrostatic pressure with respect
to p, ζR , and T , respectively. In Appendix 1 we provide details on the calculation and further
show that νζ (z) = −g⊥ρRνp(z), and νG = g

G (ρ − ρRνp), allowing us to eliminate these
functions and express the z-dependence of ∇|| p using only the two ODEs for νp and ρ:

∇|| p = νp
[∇|| pR − ρR (g⊥∇||ζR + g||e||)

] + ρg||e|| (23)

We show the ODE defining νp to be

{
d
dz νp = (g⊥ρβ)νp

νp(ζR ) = 1.
(24)

We now have all we need to compute the upscaled flux. Combining (11) and (23), reor-
ganizing terms and moving the z-independent part outside the integral, we get

F = −
⎛
⎜⎝

ζB∫

ζT

νpρλk|| dz

⎞
⎟⎠ (∇|| pR − ρR (g⊥∇||ζR + g||e||)

)

= −HNR̃ΛK
(∇|| pR − ρR (g⊥∇||ζR + g||e||)

)
(25)
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with the following definitions of upscaled variables:

HK :=
ζB∫

ζT

k|| dz (26)

HΛK :=
ζB∫

ζT

λk|| dz (27)

H R̃ΛK :=
ζB∫

ζT

ρλk|| dz (28)

HNR̃ΛK :=
ζB∫

ζT

νpρλk|| dz (29)

Previously in (10), we defined R as a vertical average of the fine-scale density, weighted
by porosity. In (28) above, a different density-related quantity R̃ is defined, which represents
the vertical average of density, weighted by permeability. As such, R̃ is a tensor value, and
not easily interpretable as a quantity separate from the context in which it figures—as an
inherent component of the upscaled mass flux. For this reason, we choose to interpret the
upscaled mass flux as a basic quantity in itself and will not formally factor it into a density
and a volumetric flux part. (Moreover, the upscaled volumetric flux from such a factorization
will not generally be equal to the upscaled volumetric flux directly obtained from vertical
integration).

2.2.1 Complete Upscaled Equation Set

Using previous definitions, the final set of upscaled equations for each phase becomes

HΦ
∂

∂t
(RS)+ ∇|| · F = Ψ (30)

F = −HNR̃ΛK
(∇|| pR − ρR (g⊥∇||ζR + g||e||)

)
. (31)

The equation system can be solved for upscaled saturation, Sα , and reference pressure, pR ,
for each phase. Each phase can be modeled either as compressible or incompressible. For the
incompressible phase, the equations reduce to those of incompressible two-phase VE flow,
c.f. Sect. 2.4.2.

In our inclined coordinate system, the expression for the gravity potential V can be estab-
lished in a similar manner as for temperature in (2), namely

V (x) = V0 − g · (x − x0)

= V0 − g||e|| · (x|| − x||0)− g⊥(z − z0) (32)

On the chosen reference surface, we have z = ζR (x||), so the gravity potential VR(x||) and
its lateral gradient ∇||VR(x||) are written

VR(x||) = V0 − g||e|| · (x|| − x||0)− g⊥(ζR (x||)− z0) (33)

∇||VR(x||) = −g||e|| − g⊥∇||ζR (x||). (34)
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Table 1 Upscaled variables for
the homogeneous, sharp-interface
system

Φ = φ Λ =
(

h
Hμ

)
S = h

H R = J1
K = k|| Ψ = Hψ

N = J2
J1

R̃ = R

We recognize ∇||VR inside the parenthesis of the upscaled flux expression (31). We further
note that in (31), the upscaled flux F becomes zero when the pressure gradient equals the
negative gravity potential gradient, as one would expect.

Although the upscaled quantities N, R̃,Λ, and K can be defined as separate quantities
according to Eqs. (26)–(29) above, for practical simulation only their product is needed, and
we would not need to compute them separately. Moreover, their interpretation as separate
quantities is less natural than for their fine-scale counterparts; they are linked by their depen-
dence on the same fine-scale variables. For instance, changes in fine-scale k|| lead to changes
not only in K, but in Λ, R̃, and N as well.

2.3 Homogeneous, Sharp-Interface System

To simplify the definition of several upscaled variables and facilitate further analysis of the
equations, we assume vertically homogeneous rock properties and a sharp CO2–water inter-
face. A sharp interface means that the saturation of phase α is always at endpoint saturation
inside its region, and at residual saturation outside. Since we do not take residual satura-
tion into account, the CO2 saturation therefore equals one inside the plume and zero outside.
Note that residual saturations could easily be added if needed. As a consequence, the mobility
of phase α will be μ−1

α inside the region it occupies and zero outside. Vertically homoge-
neous rock properties allow us to move porosity and permeability outside the integrals. The
upscaled expressions for CO2 and for brine are similar, but with integrals taken over different
intervals (corresponding to the height of the respective phase domain). While we present the
expressions for the CO2 phase below, the corresponding expressions for the brine phase can
be obtained by substituting h with H − h and changing the bounds of the integral to be from
ζM to ζB.

For the CO2 phase, the new significantly simpler expressions for the previously defined
upscaled variables are listed in Table 1, using the following short-hand for integrals:

J1 = 1

h

ζM∫

ζT

ρ dz (35)

J2 = 1

h

ζM∫

ζT

ρνp dz. (36)

Since the CO2 mobility is zero outside the zone it occupies, we only need to integrate
across the plume height, i.e., from ζT to ζM . Note that several previously defined tensorial
quantities (R̃,N,Λ) can be now be represented as simple scalar values.

The simplified equations for the CO2 phase can be written out directly in terms of the Ji :

φ
∂

∂t
(hJ1)+ ∇|| · F = Hψ (37)

123



106 O. Andersen et al.

F = − h

μ
J2k||

(∇|| pR − ρR (g⊥∇||ζR + g||e||)
)
. (38)

By choosing ζR = ζM , the equations of the two phases are described using a common
reference pressure pR , and the combined system can be solved in terms of pR and h.

2.4 Special Cases

2.4.1 Special Case 1: Semi-compressible Model

It can often be reasonable to ignore vertical density changes while still allowing lateral
variation. We refer to such a model as semi-compressible. Our equations reduce to a version
of this model when we remove the effects of depth from the upscaled variables. For the
sharp-interface model above, this means that both integrals J1 and J2 reduce to ρR , and
equation (37) and (38) become

φ
∂

∂t
(ρR h)+ ∇|| · F = Hψ (39)

F = −ρR

h

μ
k||

(∇|| pR − ρR (g⊥∇||ζR + g||e||)
)
. (40)

These equations describe a semi-compressible, sharp-interface system where ρ(x) :=
ρR (x, y). However, as these equations stand above, they are not entirely consistent with
the implied fine-scale flux. In fact, the assumption of constant vertical density inevitably
leads to non-physical distortions in the hydrostatic pressure field. To demonstrate this, we
consider the reconstruction of the fine-scale hydrostatic pressure field under the assumption
of constant vertical density (for simplicity, we consider a zero dip angle):

p(z) = pR + ρR g(z − ζR )

The lateral gradient at z then becomes

∇|| p(z) = ∇|| pR − ρR g∇||ζR + ∇||ρR g(z − ζR ). (41)

We see that the fine-scale lateral pressure gradient includes a term that depends linearly
on z. This vertical variation in the pressure field is non-physical and introduced by our
assumption that density is free to vary in two spatial dimensions but not in the third.

We can obtain a new corrected expression for the upscaled mass flux using (41) as the
expression of fine-scale pressure gradient and doing the vertical integration. We obtain

F∗ = −ρR

h

μ
k||

(∇|| pR − ρR (g⊥∇||ζR + g||e||)+ C∗∇||ρR

)
, (42)

where

C∗ = 1

2h
g⊥((ζM − ζR )

2 − (ζT − ζR )
2). (43)

The mass flux expression in (42) is thus equal to the one in (40) with the additional term
C∗∇||ρR . This ‘corrective’ term is necessary to keep the coarse-scale mass-flux consistent
with the fine scale one. For certain choices of ζR , the expression of C∗ becomes simpler. For
instance, for ζR = ζM , we get C∗ = − 1

2 hg⊥ . If on the other hand ζR is taken to be 1
2 (ζM +ζT),

then C∗ becomes zero.
It should also be noted that the term linear in z in (41) means that for situations where

there is lateral variation in density, a set of horizontal, parallel isobars at the fine-scale cannot
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be obtained. One consequence for VE simulation is that after complete equilibrium has been
achieved in a model (system at rest), the CO2–water interface will not be completely flat
unless the reference surface ζR itself is. This problem manifests itself whether one uses (40)
or (42) to compute upscaled flux, but is more pronounced for (40). Using the CO2–water
interface as reference surface ζR shifts the problem away from this interface, which will then
be flat for systems in equilibrium.

2.4.2 Special Case 2: Incompressible Model

By considering ρ to be constant in time and space, the equations of (39)–(40) can be divided
by density, and the system is reduced to the well-known equations for a sharp-interface,
incompressible system, with the right hand side now representing a volumetric source term.

φ
∂

∂t
h + ∇||U = Hψ (44)

U = − h

μ
k||

(∇|| pR − ρR (g⊥∇||ζR + g||e||)
)

(45)

2.5 Computation of ρ and νp

The computation of the integrals J1 and J2 involves evaluation of ρ and νp for given values
of reference pressure, reference surface position, and depth. These values will generally vary
from time-step to time-step in a simulation and have to be computed for each cell of the
discretized grid. However, these functions are not defined by explicit formulas, but indirectly
as solutions to ODEs.

There are several ways to obtain actual function values for the purposes of running a
numerical simulation. The most obvious approach would be to compute the function values
directly as needed using an ODE solver. This is however a computationally expensive solution,
since these functions need to be evaluated in every grid-point at every time-step. Moreover,
as they figure in the integrands of J1 and J2, the ODE solver needs to provide the function
values across the whole integration interval, not just at the end points. On the other hand, it
should be mentioned that the computation of ρ and νp by integration of ODEs is trivially
parallelizable, allowing for efficient implementation on modern computing hardware.

Another option would be to precompute the integrals for a wide range of pressures, refer-
ence surface positions, and depths. The results could be stored in lookup tables from which
specific values could be extracted or interpolated as needed during simulation. This approach
requires much less computation than solving the relevant ODE directly every time. In order
to provide adequate accuracy, the lookup tables would however have to be large, as they need
to be sufficiently densely sampled in three independent variables (two, if reference surface
is fixed).

A third option is to approximate the functions during runtime using a Taylor expansion
centered on the known value of the function (i.e., at the reference surface). This approach only
requires knowledge of the function derivatives around ζR . These can be computed formally for
all three functions, in terms of derivatives of the function of state (β, γ , and higher derivatives
of these). A second-order Taylor development of ρ and νp is written on the general form:

f (z) = f (ζR )+ f ′(ζR )(z − ζR )+ 1

2
f ′′(ζR )(z − ζR )

2 + (z − ζR )
2ε(z − ζR ), (46)

where ε → 0 as z → ζR . The formal expressions of values and derivatives for ρ and νp are
provided in Appendix 2. For the sharp-interface, vertically homogeneous model, a convenient
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feature of the Taylor expansion approach is that the numerical integration is no longer needed
to compute the involved integrals, as the integrals themselves are easily approximated by the
Taylor developments.

One limitation of this approach, however, is that it requires the involved functions to have
continuous derivatives, which means it cannot be used for approximations that involves cross-
ing the liquid–vapor boundary. Also, in regions close to the critical point, the approximation
will only be reasonably accurate in a very limited depth range around ζR . This issue will be
closely investigated in the following section.

3 Applicability

Vertical changes in CO2 density within the aquifer are determined by changes in pressure
and temperature, both increasing with depth. These changes exert opposite effects on CO2

density, which may therefore increase, decrease, or remain roughly constant with depth. As
seen in the previous section, the full inclusion of variable density adds significant complexity
to the VE model. Depending on reservoir conditions and required accuracy, this additional
complexity might not be needed. In this section, we examine a wide range of scenarios defined
by constant temperature gradients and hydrostatic pressure. In each case, we examine the
behavior of the CO2 density profile and mass flux and determine what vertical correction (in
terms of Taylor development) would be appropriate.

3.1 The Depth–Temperature Gradient Diagram

To analyze the CO2 density changes at different depths and for temperature gradients, we use
a 2D diagram whose horizontal axis corresponds to the temperature gradient, and vertical axis
to depth. We refer to this diagram as the depth versus temperature gradient diagram (DTG
diagram). Assuming hydrostatic pressure and constant water density, the region spanned
by such a diagram can be seen as a nonlinear transformation of the pressure/temperature
plane commonly used for the CO2 phase diagram (Fig. 2b). A vertical line in this diagram
corresponds to the locus of pressure/temperature values encountered when moving from the
surface downward. The vertical axis of the diagram has been inverted to reflect this idea.

We will use this format to examine vertical differences in CO2 density and mass flux
observed for specified CO2 plume thickness. We construct an example diagram for an off-
shore aquifer where we assume a constant water density of 1,000 kg/m3, a sea depth of 100
m, and a sea floor temperature of 4 ◦C. We let the geothermal gradient vary from 15 K/km to
60 K/km.

Values for CO2 density are here interpolated from a regularly sampled table based on the
equation of state proposed by (Span and Wagner 1996). The table contains 2000 × 2000
values, with pressure ranging from 0.1 to 15 MPa and temperature from 270 to 350 K.

3.2 Vertical Differences in Density

We here examine the vertical variation in density for a CO2 plume of a given thickness h,
trapped under a confining formation, for varying depths and geothermal gradient values.
We consider the relative difference between vertically averaged density R (cf. Table 1) and
reference density ρR , using ζM as the reference surface. The relative density difference then
has the following expression:
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Fig. 2 Left A DTG diagram corresponding to a surface temperature of 4 ◦C at a sea floor depth of 100 m.
The CO2 phase transition lines and critical point are indicated. Right relevant part of the usual CO2 phase
diagram, with the domain covered by the DTG diagram indicated by the gray triangular area. The lowermost
point of the triangle corresponds to the sea floor bottom

R − ρR

ρR

= 1

ρR

J1(h)− 1. (47)

The left column diagrams of Fig. 3a and b present the relative CO2 density difference
as contour plots on the DTG diagram (liquid–vapor boundary and supercritical region have
been indicated for reference), for two different plume thicknesses. Positive values indicate
that vertically averaged densities are higher than the reference, suggesting decreasing density
with depth. The white region around the liquid–vapor boundary line indicates conditions
where gas–liquid phase transition is encountered within the height of the plume. With the
possibility of partial CO2 evaporation/condensation, this region requires more care in the
numerical reconstruction of the vertical density profile and is thus omitted here.

For the 20-m thick plume in (a), only a small egg-shaped region around the critical point,
most of which in the supercritical region, shows a difference of more than 1 % for averaged
density. For the 100-m thick plume in (b), the regions where correction is needed have
significantly expanded, covering most of the supercritical region and parts of the gas and
liquid regions as well.

The plots on the right indicate zones where different orders of Taylor development are
needed to approximate the variation in CO2 density in order to keep relative density error
below a given tolerance threshold, which we here have set to 1 %. In the red region around
the critical point, not even a second-order correction is sufficient to approximate density
within the tolerance. In the white region, where a crossing of the liquid–vapor boundary
will occur within the height of the plume, a Taylor approximation would not work at all. To
construct these diagrams, the Taylor approximated values have been compared with values
for density obtained through numerical integration of the corresponding ODE, using the
MATLAB ode23 solver.

As previous work has pointed out (Bachu 2003), CO2 density profiles tend to remain
constant or slightly increase with depth as long as the temperature gradient is high enough
to avoid conditions where the liquid–vapor boundary is crossed moving downward. It might
therefore seem surprising that the diagrams in Fig. 3 indicate large areas where CO2 density
at the bottom is lower than at the top. This can be explained by the fact that the corresponding
density curves presented in (Bachu 2003) involve hydrostatic pressure based on the density
of the surrounding brine, whereas the hydrostatic pressure inside a CO2 plume is based
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Fig. 3 Relative difference between vertically averaged and bottom (reference) CO2 density for plume heights
of a 20 m and b 100 m, superposed on the DTG diagram, with the vertical axis indicating the depth of ζM . Plots
on the left display the density differences; plots on the right the corresponding zones of approximation for a
selected tolerance of 1 %. In the dark blue regions, density differences are already smaller than this tolerance.
In light blue regions, a first-order Taylor development is required to represent the variation in density within
the tolerance. In yellow regions, a second-order development is required. In red regions, the second-order
development is insufficient. The white region along the liquid–vapor boundary indicates the zone where the
liquid–vapor boundary is located within the plume

on the density of the CO2 itself, significantly lower than that of brine. Figure 4 shows a
sample of some reconstructed density profiles under different conditions. It is possible that,
in (likely) rare cases, this vertical density difference may cause gravitational instabilities
within the plume. We have however not further investigated this possibility in the present
work.

3.3 Vertical Differences in Mass Flux

We will now study the influence of vertical density variations on CO2 mass flux. With the
sharp-interface assumption, we see from (45) that the expression for vertically integrated
CO2 mass flux in the incompressible case is

Fincomp = −ρc,R
h

μc
k||

(∇|| pR − ρc,R (g⊥∇||ζR + g||e||)
)
. (48)

Similarly, from (38) we see that the corresponding expression in the fully compressible case
is
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Fig. 4 Vertical CO2 density profiles within a 100-m thick plume, for interface depth of 400 m (top) and 850
m (bottom), and with different temperature gradients. (Sea floor temperature considered to be 4 ◦C, at a depth
of 100 m). In most situations, density decreases with depth within the plume

Fcomp = −J2(h)
h

μc
k||

(∇|| pR − ρc,R (g⊥∇||ζR + g||e||)
)

= J2(h)

ρc,R
Fincomp. (49)

The relative difference in magnitude is therefore

||Fcomp − Fincomp||
||Fincomp|| = 1

ρR

J2(h)− 1. (50)

Figure 5 shows the resulting relative errors and approximation regions on the DTG dia-
gram. Perhaps the most striking feature here is that the size and shape of the contour regions
differ significantly from those in Fig. 3. A large part of the gas phase region has a 1 % or
greater difference in mass flux, even while Fig. 3 shows that there is almost no corresponding
difference in density. On the other hand, much of the supercritical region has a greater than
1 % difference in density, but not in mass flux.

It may seem surprising to find a noticeable difference in mass flux magnitude even at
conditions where the density profile remains virtually constant in depth. However, at the
fine scale, the mass flux is a product of a volumetric flux and a density. The density varies
with depth according to ODE (16), which is governed by two terms that tend to cancel out
(involving the coefficients of isothermal compressibility and of isobaric thermal expansion).
On the other hand, the variation of the volumetric flux is scaled by the νp function, defined by
ODE (24), involves the isobaric compressibility coefficient only. The function νp describes
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Fig. 5 Left Relative differences in vertically integrated CO2 mass flux magnitude between the fully com-
pressible and the incompressible model, for a plume height of a 20 m and b 100 m, assuming a horizontal flow
plane. Negative values signify lower mass flux in the compressible model. Right plot of the corresponding
zones of approximation, for a selected tolerance of 1 %. The coloring of zones has the same meaning as in
Fig. 4

how, for a given depth, local pressure reacts to changes in reference pressure. At any given
depth temperature is constant, and νp thus describes a change in pressure that is not counter-
acted by first-order thermal effects. As such, even under conditions where density remains
fairly constant in depth, the changes in volumetric flux can in some cases lead to noticeable
differences in mass flux under the fully compressible model.

4 Simulated Test Cases

To assess the impact of variable density, we ran numerical simulations on three simple scenar-
ios based on the sharp-interface model. In each scenario, we compared the incompressible,
the semi-compressible, and the fully compressible VE model for the CO2 phase (brine density
assumed constant).

The simulator code we implemented employs a fully implicit numerical scheme using
automatic differentiation (Neidinger 2010), within the framework of the MATLAB Reser-
voir Simulation Toolbox (Lie et al. 2010). Automatic differentiation is based on the idea that
all simulation variables, as well as all quantities derived thereof, are represented by numeric
types that also contain complete information about their partial derivatives with respect to
each simulation variable. Any computation involving these types propagates and updates
the derivative information using standard derivative rules. Since the system Jacobians are
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obtained directly as a side effect of computing the expressions themselves, automatic differ-
entiation allows for rapid and easy implementation of fully implicit model prototypes using
a standard Newton-Raphson approach.

Values for CO2 density are obtained using interpolation of sampled tables computed
according to the equation of state proposed in (Span and Wagner 1996). The reference
surface is set to the brine–CO2 interface ζM. For the fully compressible model, ρ and νp are
approximated using a second-order Taylor expansion from this reference surface. Although
the accuracy of this approach degrades when approaching the critical point, we conclude
that the results are accurate enough for the purpose of comparing the models in the scenarios
investigated. This is supported by good comparisons with full 3D simulations (presented
only for Scenario 1).

In order to obtain close-to-critical conditions for CO2, all our scenarios consider relatively
high values for the thermal gradient. For low thermal gradients, the depths corresponding to
critical temperature and critical pressure, respectively, would be farther apart, and vertical
variation in CO2 density would be less important.

4.1 Scenario 1: CO2 Injection into Horizontal Aquifer

In this scenario, we model injection of CO2 into a horizontal aquifer with impermeable, flat
caprock. We consider the case of injection along a horizontal well located at the bottom of the
aquifer, aligned with the y-direction. Since we have symmetry along this direction, we model
only an x–z slice of the domain, and by vertical integration the simulation is essentially
reduced to a single dimension. The lateral extent of the resulting one-dimensional model
is 80 km, which we discretize as a single row of cells with hydrostatic pressure boundary
conditions at the two ends. The injection well is located in the center of this domain, 40 km
from either boundary. Actual examples of horizontal wells for injection of CO2 are the In
Salah Gas Project in Algeria and the Weyburn Field in Canada (IPCC 2005).

The modeled aquifer is 150 m thick and located at a depth of 750 m, with a constant
rock porosity of 0.2 and permeability of 400 mD, roughly comparable to, e.g., parts of the
Carrizo-Wilcox aquifer (Hesse et al. 2008). We assume initial pressure to be hydrostatic,
with a constant brine density of 1,050 kg/m3. Temperature is given by a surface temperature
of 279.15 K (6 ◦C) and a geothermal temperature gradient of 40 K/km.

We consider an injection at a rate of 3.33 megatons of CO2 per year per unit (kilometer) of
injection well for 19 years, followed by a 51-year migration period (total simulation time of
60 years). A separate simulation is run for each of the three density models. Since the effects
of vertical density variations increase with plume height, we aim to obtain a plume that does
not spread out too quickly. Therefore, we choose viscosity values for CO2 and brine that give
a ratio close to 1 (5.3×10−2 and 5.4×10−2cP, respectively). For the incompressible model,
CO2 density is set to 315.5 kg/m3, which corresponds to density at fluid-static pressure and
thermal equilibrium. Although this choice will be inaccurate in the presence of overpressure
during injection, it is the better choice for describing CO2 density in the post-injection phase.

In Fig. 6 below, we present the simulation outcomes at the end of the injection (year 19),
the first year after injection has ended (year 20), and the end of the simulation (year 60). Each
column presents, for a particular year, the plots for interface depth, CO2 pressure, density,
and mass flux across the extent of the simulation domain. The depth plot has its second axis
inverted for a more intuitive representation of the plume shape.

In the figure we note differences between the incompressible and compressible models
both in terms of interface position, pressure, density, and mass flux. Given that all three
plumes contain the same amount of mass, we note that the plume of incompressible CO2 has
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Fig. 6 Graphs representing CO2 depth profile, pressure, density, and mass flux for selected years in Scenario
1. Graphs in blue (marked with circles) represent results from using the incompressible CO2 model, the green
graphs (stars) represent the semi-compressible model, and red graphs (triangles) the fully compressible model.
For pressure and density, solid lines represent values at the CO2–water interface, and dashed lines represent
values at the top of the aquifer. Note that for the density plots, only the fully compressible model has separate
lines for top and interface values, as the other models assume constant vertical density

lower density and hence a larger volume than the others. During injection, the overpressure in
the incompressible model is significantly higher than for the other models, due to the larger
volume of displaced fluid. After injection, the pressure drops instantly in the incompressible
case, but only gradually in the compressible cases, where continuously expanding plumes
push on the surrounding brine and drive flow toward the boundaries.
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Fig. 7 Left Conditions at the CO2–water interface for the fully compressible model in Scenario 1, plotted
on the CO2 phase diagram. The cyan curve (squares) represents year 19, the magenta curve (triangles) year
20, and the black curve (stars) year 60. For reference, the contour lines on the left plot represent isovalues
for CO2 density (in kg/m3). Right Zones of approximation, defined in the same way as those for vertically
averaged density in Fig. 3, computed for a plume height of 100 m and a tolerance of 1 %

Comparing the two compressible models, we find interface depths, pressures, and mass
fluxes to be very similar. On the other hand, there are marked differences in terms of CO2

density. Whereas the density at the interface in the fully compressible model is relatively
close to, but slightly less than, that of the semi-compressible model, the density at the top is
significantly higher. Despite this difference it should be noted that, when integrated across
height, the total CO2 masses in the two models for a given vertical column do not significantly
differ. This can also be inferred from the respective depth plots, keeping in mind that the total
plume masses are the same.

Figure 7 relates to the fully compressible model only. The left plot traces out the pressure
and temperature values at the CO2–water interface for year 19, 20, and 60 in the CO2 phase
diagram. The point where the three curves meet corresponds to the condition at the domain
boundaries, whereas the opposite endpoints represent the deepest points of the respective
plume interfaces. We note that the interface conditions at all times remain fully within the
supercritical zone, with boundary conditions fixed relatively close to the critical point. The
right plot shows the same part of the CO2 phase diagram, this time with a color map rep-
resenting zones of approximation similarly to the lower right plot of Fig. 3b (but using the
phase diagram rather than the DTG diagram). Comparing the left and right plots of Fig. 7,
we see that conditions at the plume interface enter the red approximation zone, meaning that
a second-order Taylor development is insufficient to compute average density within 1 % of
the exact value for a 100-m tall plume. As such, our simulation result (which is based on
Taylor approximation) is not exact within this tolerance. If higher precision is needed, the use
of finely sampled tables or direct integration would be necessary. On the other hand, we note
that although we purposefully designed the scenario to present conditions with high-density
variations, the difference in the simulation results for the semi-compressible and the fully
compressible model remains small.

In order to assess the accuracy of using the VE assumption in this scenario, we compare
the simulation outcome using the fully compressible VE model with that of a full 3D simu-
lation. Similar to the VE simulations, the 3D simulation uses a fully implicit, finite-volume
numerical scheme solved using automatic differentiation and Newton-Raphson. A uniform
spatial resolution is used, with 100 cells along the x-axis and 90 along the y-axis. We use
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Fig. 8 Comparing the depth profile from a simulation using the compressible VE model with that obtained
from a full 3D simulation. The red curves (triangles) represent the VE model and the black curves (stars) the
full 3D model

linear relative permeabilities to limit differences caused by the vertical discretization. As a
sharp interface is assumed, we use zero capillary pressure. The comparison is presented in
Fig. 8, where we see a good correspondence between the resulting depth profiles. Similar
correspondences were also seen for pressure and density (not shown here).

4.2 Scenario 2: Gravity-Driven Flow of CO2 Along a Sloping Aquifer

We now consider gravity-driven flow of a CO2 plume as it migrates upward along a gently
sloping, open aquifer. The aquifer caprock is assumed flat, with a constant upward slope of
one-half degree toward the right. We simulate flow along a 160 km stretch of this slope, the
bottom of which is located at a depth of 1,397 m, and the top reaches the surface at 0 m. As
in the previous scenario, we consider a situation symmetrical along the y-axis, and therefore
model our domain in one dimension as a single row of cells. Rock porosity is 0.1, perme-
ability 200 mD, and the aquifer has a constant thickness of 200 m. The geothermal gradient
is 45 K/km, with a surface temperature of 9 ◦C, and brine density is set to 1,100 kg/m3.
Under these conditions, CO2 will transition from supercritical to gas phase somewhere in
the middle of the simulated domain, passing close to but avoiding the critical point. We
impose hydrostatic pressure boundary conditions at the two end points, no flow conditions
everywhere else, and set fluid viscosities to 5.36 × 10−2 cP for CO2 and 6.5 × 10−1 cP for
brine. We simulate the gravity-driven flow of a CO2 plume of 30 megaton per kilometer in
the y-direction, initially positioned at a depth of 877 m, as it slowly migrates upward for a
total simulation time of 400 years, using 10-year timesteps. The initial plume has the shape
of an inverted triangle with a base of 7.6 km and an maximal height of 164 m for the fully
compressible model. Initial pressure at the CO2–brine interface is hydrostatic, and the plume
is in vertical equilibrium. For the incompressible model, CO2 density is set to 433 kg/m3,
which corresponds to the density at the CO2–brine interface for the lower most point of the
initial plume (according to the fully compressible model).

Figure 9 presents the simulation outcomes for years 40 and 400. We observe that although
our simulation parameters were chosen to highlight density variation (as seen on the density
plot for year 40), the semi-compressible and the fully compressible model have virtually
identical plume profiles, pressures, and mass fluxes. On the other hand, we note an apprecia-
ble difference in the advancement of the plume between the compressible and incompress-
ible models toward the end of the simulation period, where the compressible plumes have
advanced about fifteen kilometers further than the incompressible one. The compressible
plumes also end up being more voluminous than the incompressible one, due to the consid-
erable decrease in CO2 density as the plume is moving upward. We also notice differences
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Fig. 9 Graphs representing CO2 depth profile, pressure, density, and mass flux for year 40 and 400 in Scenario
2. Graphs in blue (circles) represent results from using the incompressible CO2 model, the green graphs (stars)
represent the semi-compressible model, and red graphs (triangles) the fully compressible model. For pressure
and density, whole lines represent values at the CO2–water interface, and dashed lines represent values at the
top of the aquifer. Note that for the density plots, only the fully compressible model has separate lines for top
and interface values, as the other models assume constant vertical density. Also note that only the local plume
region has been plotted for each year, not the entire 160 km domain

between the incompressible and compressible models in terms of mass flux, which is overally
higher for the compressible model at year 40. On the other hand, at year 400, the compressible
plume has a lower mass flux than the incompressible one toward the deep (left) side of the
model, whereas the situation is reversed toward the shallow end. Since we do not include
capillary or dissolution trapping in our model, and since no CO2 has left the domain during
simulation, the total mass of each plume remains identical.
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Fig. 10 Left Conditions at the CO2–water interface for the fully compressible model in Scenario 2, plotted
on the CO2 phase diagram. The cyan curve (squares) represents year 40 and the magenta curve (triangles)
year 400. For reference, the contour lines on the left plot represent isovalues for CO2 density (in kg/m3). Right
Zones of approximation, defined in the same way as those for vertically averaged density in Fig. 3, computed
for a plume height of 100 m and a tolerance of 1 %

Figure 10 presents the conditions on the CO2–water interface of the fully compressible
CO2 plume, similarly to Fig. 7 for the previous scenario. On the left plot, we can see how
these conditions gradually change from supercritical to gas phase for CO2 as we move along
the interface from the deep to the shallow end of the simulated aquifer domain. Comparing
the left and right plots of the figure, we note that the interface conditions barely avoid the
white region in the right plot. Passing through the white region would signify the crossing of
the liquid–vapor boundary for a plume height of 100 m or more, thus implying the need of a
more advanced model.

4.3 Scenario 3: CO2 Injection into Structural Trap, at Conditions Close to Critical Point

In the last example, we study the injection and accumulation of CO2 into a large dome. We
here aim to obtain a plume of significant thickness and study it as it settles toward equilibrium.
This time, we consider a bell-shaped domain of 10 × 10 km, measuring 160 m from top to
bottom in the z direction. The apex is located at a depth of 700 m, and the spill point at
860 m. For the first 25 years, CO2 is injected at a rate of 4 megatons per year (injection
point located at the apex). Thereafter, we continue the simulation for another 175 years in
order for the plume to settle within the confines of the dome. The injection rate of CO2 has
been chosen so that that no CO2 spills out of the dome during the injection period for any
of the models. The permeability is 1.1 Darcy, and the porosity 0.2. Brine density is 1,100
kg/m3, and the temperature gradient is 40◦/km, with a surface temperature of 6 ◦C. Water

and CO2 viscosities are 6.5×10−1 and 5.36×10−2 cP, respectively. As we expect the dome
to fill up about half way, the CO2 density for the incompressible model was chosen based on
conditions at a depth of 775.4 m, close to the midpoint between apex and spill point depths,
yielding a value of 503.4 6 kg/m3. (If the apex had instead been chosen as reference, the
density would have been significantly lower, at 330 kg/m3). In order to reduce the influence
of the constant-pressure boundary conditions, we extend the domain horizontally 10 km in
each direction. The total extent of the simulated domain thus becomes 30 km × 30 km,
discretized as a regular grid with 75 × 75 cells.

The simulation results for year 25, 26, and 200 are shown in Fig. 11. During the injection
period, the injection pressure pushes CO2 downward and to the sides. After injection ends,
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Fig. 11 Graphs representing CO2 depth profile, pressure, density, and mass flux for selected years in Scenario
3. Graphs in blue (circles) represent results from using the incompressible CO2 model, the green graphs (stars)
represent the semi-compressible model, and red graphs (triangles) the fully compressible model. For pressure
and density, whole lines represent values at the CO2–water interface, and dashed lines represent values at the
top of the aquifer. Note that for the density plots, only the fully compressible model has separate lines for top
and interface values, as the other models assume constant vertical density. Note that only a cross-section of
the local area around the dome is plotted

the pressure drops and the injected CO2 slowly levels out toward an equilibrium state with a
horizontal CO2–brine interface. We note that the direction of the mass flux switches imme-
diately in the incompressible case, whereas it changes only gradually for the compressible
models.
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At the last year of the simulation, equilibrium has almost been obtained, with a flat
interface and negligible mass flux. The final interface positions for all three models closely
match at this point. We also note fairly small pressure differences between the three models.
The fully compressible model exhibits an intra-plume vertical density difference of 18.5 %
(the top being heavier than the bottom). Note that this is an overestimation due to the use
of Taylor expansion in a regime where the error term is large—the CO2 density at caprock
level obtained directly from the equation of state would yield a density difference closer to
15 %. In any case, the slightly different interface positions and densities help explain why all
three plumes, all containing the same mass of CO2, end up with almost identical thickness.
Interface conditions remain firmly within the supercritical region and in relative proximity
to the critical point at all times.

5 Summary and Conclusions

Models based on the assumption of vertical equilibrium have regained interest in recent years
because of their potential for fast and accurate simulation of large-scale long-term CO2 stor-
age scenarios. The work presented in this paper is part of ongoing efforts to develop and
adapt such models for more complex problems. To this end, we present a novel and mathe-
matically consistent way of handling CO2 density variations within the VE framework. The
model formulation captures vertical variation in density through the definition and subse-
quent integration of two ordinary differential equations. We have also studied the impact of
variable vertical density for a range of conditions and examined its influence in three specific
scenarios. We have also made some additional observations, including the decreasing density
with depth within the CO2 plume, the interdependence of the upscaled quantities on the same
set of fine-scale variables, and the need for a correction term in the semi-compressible model
to remain consistent with the implied fine-scale flux.

While the presented model introduces a complete treatment of variable CO2 density within
a VE framework, it should be noted that we have made a number of simplifying assumptions
in order to facilitate the model formulation and isolate the impact of CO2 density variations. A
more complete model would include physical effects such as capillarity, residual saturations,
leakage of brine through caprock, and mixing of phases. As mentioned in the introduction,
these effects have been modeled within the VE setting in previous work, and therefore may be
included along with the vertical density model described herein for a more complete model.
Moreover, whereas thermal equilibrium is assumed at all times, this would not be the case in
the vicinity of the injection point. For instance, as discussed in (Vilarrasa et al. 2013b), the
injection of liquid CO2 would lead to smaller displaced volumes close to the well, resulting
in lower induced overpressure overall.

The handling of vertical density changes in the vertical integration is not straightforward.
Even if we approximate the involved differential equations using Taylor expansions, the
inclusion of full vertical density variations involves computational overhead and introduces
complexity to the simulation code. Although we have seen from the two previous sections
that the model may predict considerable density differences between top and bottom of the
plume, the impact on the actual mass movement is generally limited, and the much simpler
semi-compressible model seems to produce very similar results in all scenarios tested so
far. The scenarios presented in the previous section were tuned to model conditions where
density changes would be important, but despite these choices, the differences in plume
shape, pressures, and fluxes remain small. This remained the case when we later tried to
re-run the scenarios while allowing for variable viscosity. However, it is possible that the
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large differences in vertical density might in itself be interesting for some applications, such
as interpretation of seismic or microgravimetric measurements for monitoring purposes.

A couple of observations may provide some intuition on the reason mass flux changes
so little with depth even in the fully compressible model. First, increases in pressure and
temperature have opposite effects on CO2 density, and these effects are similar in magnitude.
As we have seen, in almost all cases, the temperature effect is strongest, causing CO2 to
expand slightly with depth within the plume. On the other hand, the change in pressure
gradient with depth, described by νp , is not directly influenced by the temperature gradient.
As a consequence, the model predicts the Darcy volumetric flux to increase slightly with
depth. Multiplied by a density that decreases slightly with depth, the combined impact of
depth on the resulting mass flux tends to be small.

The effect of variable density becomes progressively stronger as one approaches the critical
point. However, at the same time the accuracy of the Taylor approximation deteriorates, and
ρ and νp would eventually need to be computed in a different way. Moreover, when the
crossing of the liquid–vapor boundary occurs within the interior of the plume, a more careful
approach coupled with a thermal model would be required.

The results of this study have several implications for the role of variable CO2 density
in realistic storage projects. First, a complete model is now available that allows for either
full- or semi-compressibility of CO2, which before was either approximated as a constant
value or in some other approximate way. Second, a systematic approach is proposed to
identify conditions where the full compressibility model is needed to satisfy the required
accuracy. In doing so, we may conclude that the vast majority of long-term, large-scale
storage systems require only a semi-compressible model, which substantially reduces the
complexity of the computational implementation and execution. It remains the subject of
future work to determine if the full model is needed more often in coupled systems in which
a more accurate vertical description of density and pressure are required. In general, this work
gives the needed flexibility to move between models of different complexity as the specific
CO2 storage problem dictates.
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Appendix A: Deriving the ODEs for ν p, νζ , and νG

The coefficients νp , νζ and νG are functions of z, defined as follows:

νp = ∂p

∂pR

(51)

νζ = ∂p

∂ζR

(52)

νG = ∂p

∂T
(53)
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with p being the hydrostatic pressure defined in terms of pressure pR at some reference level
ζR , i.e.,

p = pR + g⊥

z∫

ζR

ρ(p, T ) dz′. (54)

The coefficients νp, νζ , and νG are defined by ordinary differential equations that can be
derived by partial differentiation of (54) with respect to pR , ζR , and T , respectively.

A.1 Deriving the ODE for νp

To find νp , we take the partial derivative of (54) with respect to pR and get

∂p

∂pR

= νp = ∂pR

⎛
⎜⎝pR + g⊥

z∫

ζR

ρ dz′

⎞
⎟⎠

νp = 1 + g⊥

z∫

ζR

∂ρ

∂pR

dz′

νp = 1 + g⊥

z∫

ζR

(
∂ρ

∂p

∂p

∂pR

+ ∂ρ

∂T

∂T

∂pR

)
dz′

νp = 1 + g⊥

z∫

ζR

ρβ
∂p

∂pR

dz′

νp = 1 + g⊥

z∫

ζR

ρβνp dz′.

Note that T is independent of pressure, which explains why the corresponding partial deriv-
ative term disappears in the integrand above. By taking the z-derivative of both sides, we
obtain the following ODE: {

d
dz νp(z) = g⊥ρ(z)β(z)νp(z)

νp(ζR ) = 1
(55)

A.2 Deriving the ODE for νζ

To find νζ , we take the partial derivative of (54) with respect to ζR and get

∂p

∂ζR

= νζ = ∂ζR

⎛
⎜⎝pR + g⊥

z∫

ζR

ρ dz′

⎞
⎟⎠

νζ = g⊥

⎛
⎜⎝∂ζR

z∫

ζR

ρ dz′

⎞
⎟⎠
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νζ = −g⊥ρR + g⊥

z∫

ζR

(
∂ρ

∂p

∂p

∂ζR

+ ∂ρ

∂T

∂T

∂ζR

)
dz′

νζ = −g⊥ρR + g⊥

z∫

ζR

ρβ
∂p

∂ζR

dz′

νζ = −g⊥ρR + g⊥

z∫

ζR

ρβνζ dz′.

Note that T is independent of the position of the interface ζR , so the corresponding partial
derivative term disappears in the integrand above. By taking the z-derivative of both sides,
we obtain the following ODE:

{ d
dz νζ (z) = g⊥ρ(z)β(z)νζ (z)

νζ (ζR ) = −g⊥ρR

(56)

By comparing (55) and (56), we see that if νp solves (55), then (−g⊥ρRνp) solves (56). We
therefore have

νζ = −g⊥ρRνp. (57)

A.3 Deriving the ODE for νG

To find νG , we take the partial derivative of (54) with respect to T , and get

∂p

∂T
= νG = ∂T

⎛
⎜⎝pR + g⊥

z∫

ζR

ρ dz′

⎞
⎟⎠

νG = g⊥

z∫

ζR

(
∂ρ

∂p

∂p

∂T
+ ∂ρ

∂T

)
dz′

νG = g⊥

z∫

ζR

ρ

(
β
∂p

∂T
− γ

)
dz′

νG = g⊥

z∫

ζR

ρ
(
βνG − γ

)
dz′.

Note that fine-scale hydrostatic pressure does depend on T (since temperature influences
the density of the substance in the column between ζR and z, which again influences the
hydrostatic pressure). Therefore, both partial derivatives of ρ are needed in the integrand
above.

By taking the z-derivative of both sides, we obtain the following ODE:
{ d

dz νG (z) = g⊥ρ(z)β(z)νG (z)− g⊥ρ(z)γ (z)

νG (ζR ) = 0
(58)
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However, νG can be written directly in terms of νp and ρ. To demonstrate this, it is
sufficient to show that the functions νG and f (z) = g

G (ρ − ρRνp) solve the same Cauchy
problem. By inserting the derivatives of ρ and νp , we obtain the following expression for the
derivative of f :

d

dz
f (z) = g

G

(
d

dz
ρ(z)− ρR

d

dz
νp(z)

)

= g

G

(
ρ(z)

(
g⊥β(z)ρ(z)− G⊥γ (z)

) − ρR g⊥ρ(z)β(z)νp(z)
)

= g

G

(
g⊥ρ(z)β(z)

(
ρ(z)− ρRνp(z)

) − G⊥ρ(z)γ (z)
)

= g⊥ρ(z)β(z) f (z)− g⊥ρ(z)γ (z)

Since also f (ζR ) = 0, B is the solution to
{ d

dz f (z) = g⊥ρ(z)β(z) f (z)− g⊥ρ(z)γ (z)

f (ζR ) = 0
(59)

which is the same Cauchy problem as (58). We therefore have

νG = f = g

G
(ρ − ρRνp). (60)

Appendix B: Estimation of ρ and ν p by Taylor Expansion

When including full compressibility effects in a VE model, the functions ρ(z) and νp(z) are
used in the computation of upscaled variables. Here, the function ρ represents density as a
function of z. Given a reference height ζR and the phase pressure pR at this reference height,
νp is defined as

νp(z) = ∂p(z)

∂pR

.

The Taylor developments of ρ and νp can be expressed in terms of the following functions
defined from the equation of state:

β = 1

ρ

∂ρ

∂p

γ = − 1

ρ

∂ρ

∂T

β[2] = 1

ρ

∂2ρ

∂p2

γ [2] = 1

ρ

∂2ρ

∂T 2

χ = 1

ρ

∂2ρ

∂p∂T

In what follows, g⊥ and G⊥ , respectively, denote the z-components of the gravity vector
and the thermal gradient vector (the z axis is oriented at an angle θ with the true downward
direction). Values of γ , β, etc., at the reference height ζR are identified by appending a
subscript R to the variable name.
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B.1 Taylor Expansion of ρ

We here consider ρ as a function of vertical coordinate z.
The second-order development of ρ around ζR is written as

ρ(z) = ρR + ρ′
R
[z − ζR ] + 1

2
ρ′′[z − ζR ]2 + [z − ζR ]2ε(z − ζR ) (61)

with the following expressions for the derivatives of ρ

ρ′ = (
ρg⊥β − γG⊥

)
ρ

ρ′′ =
(
(g⊥ρ)

2(β2 + β[2])+ g⊥ρG̃(2χ − γβ)+ G2
⊥γ

[2]) ρ.
The values of ρ and its derivatives, evaluated at ζR , become

ρ(ζR ) = ρR

ρ′(ζR ) = (
g⊥ρRβR − G⊥γR

)
ρR

ρ′′(ζR ) =
(
(g⊥ρR )

2(β2
R

+ β[2])+ g⊥ G̃ρR (2χR − γRβR )+ G2
⊥γ

[2]
R

)
ρR .

B.2 Taylor Expansion of νp

We here consider νp as a function of vertical coordinate z.
The second-order development of νp in z around ζR is written as

νp(z) = νp R + νp R
′[z − ζR ] + 1

2
νp R

′′[z − ζR ]2 + [z − ζR ]2ε(z − ζR ) (62)

with the following expressions for the derivatives of νp

ν′
p = g⊥ρβνp

ν′′
p = (g⊥ρ)

(
(g⊥ρ)(β

2 + β[2])+ G⊥χ
)
νp.

The values of νp and its derivatives, evaluated at ζR , become:

νp(ζR ) = 1

ν′
p(ζR ) = g⊥ρRβR

ν′′
p(ζR ) = (g⊥ρR )

(
(g⊥ρR )(β

2
R

+ β[2]
R
)+ G⊥χR

)

References

Andersen, O., Nilsen, H.M., Lie, K.-A.: Reexamining CO2 storage capacity and utilization of the Utsira
Formation. In: ECMOR XIV - 14th European Conference on the Mathematics of Oil Recovery, Catania,
Sicily, Italy, 8–11 September 2014. EAGE. (2014)

Bachu, S.: Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in
response to climate change. Environ. Geol. 44(3), 277–289 (2003)

Bear, J.: Dynamics of Fluids in Porous Media. Dover Books on Physics and Chemistry. Dover Publications,
Incorporated, Mineola (1988)

Class, H., Ebigbo, A., Helmig, R., Dahle, H., Nordbotten, J., Celia, M., Audigane, P., Darcis, M., Ennis-King,
J., Fan, Y., Flemisch, B., Gasda, S., Jin, M., Krug, S., Labregere, D., Naderi Beni, A., Pawar, R., Sbai,
A., Thomas, S., Trenty, L., Wei, L.: A benchmark study on problems related to CO2 storage in geologic
formations. Comput. Geosci. 13(4), 409–434 (2009)

123



126 O. Andersen et al.

CMG: User’s Guide GEM. Computer Modeling Group, Ltd., Calgary (2009)
Coats, K., Dempsey, J., Henderson, J.: The use of vertical equilibrium in two-dimensional simulation of

three-dimensional reservoir performance. SPE J. 11–1, 63–71 (1971)
Court, B., Bandilla, K.W., Celia, M.A., Janzen, A., Dobossy, M., Nordbotten, J.M.: Applicability of vertical-

equilibrium and sharp-interface assumptions in CO2 sequestration modeling. Int. J. Greenh. Gas Control
10, 134–147 (2012)

Dentz, M., Tartakovsky, D.: Abrupt-interface solution for carbon dioxide injection into porous media. Transp.
Porous Media 79(1), 15–27 (2009)

Dietz, D.: A theoretical approach to the problem of encroaching and by-passing edgewater. Proc. Akad. van
Wet. 56–B, 83–94 (1953)

Flemisch, B., Fritz, J., Helmig, R., Niessner, J., Wohlmuth, B.: Dumux: a multi-scale multi-physics toolbox
for flow and transport processes in porous media. In: ECCOMAS Thematic Conference on Multiscale
Computational Methods for Solids and Fluids. (2007)

Gasda, S., Nordbotten, J., Celia, M.: Vertical equilibrium with sub-scale analytical methods for geological
CO2 sequestration. Comput. Geosci. 13(4), 469–481 (2009)

Gasda, S.E., Nilsen, H.M., Dahle, H.K.: Impact of structural heterogeneity on upscaled models for large-scale
CO2 migration and trapping in saline aquifers. Adv. Water Resour. 62(Part C), 520–532 (2013)

Gasda, S.E., Nilsen, H.M., Dahle, H.K., Gray, W.G.: Effective models for CO2 migration in geological systems
with varying topography. Water Resour. Res. 48(10), 10546 (2012)

Gasda, S.E., Nordbotten, J.M., Celia, M.A.: The impact of local-scale processes on large-scale CO2 migration
and immobilization. Energy Procedia 4, 3896–3903. In: 10th International Conference on Greenhouse
Gas Control Technologies, 2011a

Gasda, S.E., Nordbotten, J.M., Celia, M.A.: Vertically averaged approaches for CO2 migration with solubility
trapping. Water Resour. Res. 47(5), 5528 (2011b)

Hesse, M.A., Orr, F.M., Tchelepi, H.A.: Gravity currents with residual trapping. J. Fluid Mech. 611, 35–60
(2008)

IPCC: IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the
Intergovernmental Panel on Climate Change (2005)

Lie, K., Krogstad, S., Ligaarden, I., Natvig, J., Nilsen, H., Skaflestad, B.: Discretisation on complex grids-
open source matlab implementation. In: Proceedings of ECMOR XII-12th European Conference on the
Mathematics of Oil Recovery, EAGE, Oxford, UK (2010)

Lie, K.-A., Krogstad, S., Ligaarden, I.S., Natvig, J.R., Nilsen, H.M., Skaflestad, B.: Open source MATLAB
implementation of consistent discretisations on complex grids. Comput. Geosci. 16, 297–322 (2012)

Ligaarden, I., Nilsen, H.: Numerical aspects of using vertical equilibrium models for simulating CO2 seques-
tration. In: 12th European Conference on the Mathematics of Oil Recovery. (2010)

Mijic, A., LaForce, T.C., Muggeridge, A.H.: Co2 injectivity in saline aquifers: the impact of non-darcy flow,
phase miscibility, and gas compressibility. Water Resour. Res. 50(5), 4163–4185 (2014)

MRST.: The MATLAB Reservoir Simulation Toolbox, version 2014a. http://www.sintef.no/MRST/ (2014).
Accessed 12 November 2014

Neidinger, R.: Introduction to automatic differentiation and matlab object-oriented programming. SIAM Rev.
52(3), 545–563 (2010)

Nilsen, H.M., Herrera, P.A., Ashraf, M., Ligaarden, I., Iding, M., Hermanrud, C., Lie, K.-A., Nordbotten, J.M.,
Dahle, H.K., Keilegavlen, E.: Field-case simulation of CO2-plume migration using vertical-equilibrium
models. Energy Procedia 4, 3801–3808. In: 10th International Conference on Greenhouse Gas Control
Technologies, 2011

Nilsen, H.M., Lie, K.-A., Andersen, O.: Analysis of trapping capacities in the Norwegian North Sea using
mrst-co2lab. submitted. (2014a)

Nilsen, H.M., Lie, K.-A., Andersen, O.: Fully implicit simulation of vertical-equilibrium models with hysteresis
and capillary fringe. submitted. (2014b)

Nilsen, H.M., Lie, K.-A., Andersen, O.: Robust simulation of sharp-interface models for fast estimation of
CO2 trapping capacity. submitted (2014c)

Nordbotten, J., Celia, M., Bachu, S.: Injection and storage of CO2 in deep saline aquifers: analytical solution
for CO2 plume evolution during injection. Transp. Porous Media 58(3), 339–360 (2005)

Nordbotten, J., Flemisch, B., Gasda, S., Nilsen, H., Fan, Y., Pickup, G., Wiese, B., Celia, M., Dahle, H.,
Eigestad, G., et al.: Uncertainties in practical simulation of CO2 storage. Int. J. Greenh. Gas Control 9,
234–242 (2012)

Nordbotten, J.M., Celia, M.A.: Geological Storage of CO2: Modeling Approaches for Large-Scale Simulation.
Wiley, Hoboken (2012)

Nordbotten, J.M., Dahle, H.K.: Impact of the capillary fringe in vertically integrated models for CO2 storage.
Water Resour. Res. 47(2), 2537 (2011)

123

http://www.sintef.no/MRST/


CO2 Flow in Porous Media 127

Olivella, S., Gens, A., Carrera, J., Alonso, E.: Numerical formulation for a simulator (code_bright) for the
coupled analysis of saline media. Eng. Comput. 13(7), 87–112 (1996)

Pruess, K.: The tough codes—a family of simulation tools for multiphase flowand transport processes in
permeable media. Vadose Zone J. 3, 738–746 (2004)

Schlumberger: ECLIPSE Technical Description. Schlumberger (2010)
SINTEF ICT: The MATLAB Reservoir Simulation Toolbox: Numerical CO2 laboratory. (2014)
Span, R., Wagner, W.: A new equation of state for carbon dioxide covering the fluid region from the triple-point

temperature to 1100 k at pressures up to 800 mpa. J. Phys. Chem. Ref. Data 25(6), 1509–1596 (1996)
van der Meer, L.: The conditions limiting CO2 storage in aquifers. Energy Conversion Management 34(911),

959–966. In: Proceedings of the International Energy Agency Carbon Dioxide Disposal Symposium,
1993

Vilarrasa, V., Bolster, D., Dentz, M., Olivella, S., Carrera, J.: Effects of CO2 compressibility on CO2 storage
in deep saline aquifers. Transp. Porous Media 85(2), 619–639 (2010)

Vilarrasa, V., Carrera, J., Bolster, D., Dentz, M.: Semianalytical solution for CO2 plume shape and pressure
evolution during CO2 injection in deep saline formations. Transp. Porous Media 97(1), 43–65 (2013a)

Vilarrasa, V., Silva, O., Carrera, J., Olivella, S.: Liquid CO2 injection for geological storage in deep saline
aquifers. Int. J. Greenh. Gas Control 14, 84–96 (2013b)

Wheeler, J., Wheeler, M., et al.: Integrated parallel and accurate reservoir simulator. Technical report,
TICAM01-25, CSM, University of Texas at Austin. (2001)

Yortsos, Y.: A theoretical analysis of vertical flow equilibrium. Transp. Porous Media 18(2), 107–129 (1995)

123


	Vertically Averaged Equations with Variable Density for CO2 Flow in Porous Media
	Abstract
	1 Introduction
	2 Model Description
	2.1 Physical System
	2.1.1 VE Assumptions and Upscaling
	2.1.2 Other Simplifying Assumptions
	2.1.3 Coordinate System

	2.2 Derivation of the Full Variable Density Model
	2.2.1 Complete Upscaled Equation Set

	2.3 Homogeneous, Sharp-Interface System
	2.4 Special Cases
	2.4.1 Special Case 1: Semi-compressible Model
	2.4.2 Special Case 2: Incompressible Model

	2.5 Computation of ρ and νp

	3 Applicability
	3.1 The Depth--Temperature Gradient Diagram
	3.2 Vertical Differences in Density
	3.3 Vertical Differences in Mass Flux

	4 Simulated Test Cases
	4.1 Scenario 1: CO2 Injection into Horizontal Aquifer
	4.2 Scenario 2: Gravity-Driven Flow of CO2 Along a Sloping Aquifer
	4.3 Scenario 3: CO2 Injection into Structural Trap, at Conditions Close to Critical Point

	5 Summary and Conclusions
	Acknowledgments
	Appendix A: Deriving the ODEs for νp, νζ, and νG
	A.1 Deriving the ODE for νp
	A.2 Deriving the ODE for νζ
	A.3 Deriving the ODE for νG

	Appendix B: Estimation of ρ and νp by Taylor Expansion
	B.1 Taylor Expansion of ρ
	B.2 Taylor Expansion of νp

	References


