57 research outputs found
The Impact of Atmospheric Fluctuations on Degree-scale Imaging of the Cosmic Microwave Background
Fluctuations in the brightness of the Earth's atmosphere originating from
water vapor are an important source of noise for ground-based instruments
attempting to measure anisotropy in the Cosmic Microwave Background. This paper
presents a model for the atmospheric fluctuations and derives simple
expressions to predict the contribution of the atmosphere to experimental
measurements. Data from the South Pole and from the Atacama Desert in Chile,
two of the driest places on Earth, are used to assess the level of fluctuations
at each site.Comment: 29 pages, 7 figures, 1 table, appears in The Astrophysical Journa
Planar Silicon Metamaterial Lenslet Arrays for Millimeter-wavelength Imaging
Large imaging arrays of detectors at millimeter and submillimeter wavelengths
have applications that include measurements of the faint polarization signal in
the Cosmic Microwave Background (CMB), and submillimeter astrophysics. We are
developing planar lenslet arrays for millimeter-wavelength imaging using
metamaterials microlithically fabricated using silicon wafers. This
metamaterial technology has many potential advantages compared to conventional
hemispherical lenslet arrays, including high precision and homogeneity, planar
integrated anti-reflection layers, and a coefficient of thermal expansion
matched to the silicon detector wafer. Here we describe the design process for
a gradient-index (GRIN) metamaterial lenslet using metal-mesh patterned on
silicon and a combination of metal-mesh and etched-hole metamaterial
anti-reflection layers. We optimize the design using a bulk-material model to
rapidly simulate and iterate on the lenslet design. We fabricated prototype
GRIN metamaterial lenslet array and mounted it on a Polarbear/Simons Array
90/150~GHz band transition edge sensor (TES) bolometer detector array with
sinuous planar antennas. Beam measurements of a prototype lenslet array agree
reasonably well with the model simulations. We plan to further optimize the
design and combine it with a broadband anti-reflection coating to achieve
operation over 70--350~GHz bandwidth.Comment: Presented at SPIE Millimeter, Submillimeter, and Far-Infrared
Detectors and Instrumentation for Astronomy X, December 13-18, 202
CMB-S4: Forecasting Constraints on Primordial Gravitational Waves
CMB-S4---the next-generation ground-based cosmic microwave background (CMB)
experiment---is set to significantly advance the sensitivity of CMB
measurements and enhance our understanding of the origin and evolution of the
Universe, from the highest energies at the dawn of time through the growth of
structure to the present day. Among the science cases pursued with CMB-S4, the
quest for detecting primordial gravitational waves is a central driver of the
experimental design. This work details the development of a forecasting
framework that includes a power-spectrum-based semi-analytic projection tool,
targeted explicitly towards optimizing constraints on the tensor-to-scalar
ratio, , in the presence of Galactic foregrounds and gravitational lensing
of the CMB. This framework is unique in its direct use of information from the
achieved performance of current Stage 2--3 CMB experiments to robustly forecast
the science reach of upcoming CMB-polarization endeavors. The methodology
allows for rapid iteration over experimental configurations and offers a
flexible way to optimize the design of future experiments given a desired
scientific goal. To form a closed-loop process, we couple this semi-analytic
tool with map-based validation studies, which allow for the injection of
additional complexity and verification of our forecasts with several
independent analysis methods. We document multiple rounds of forecasts for
CMB-S4 using this process and the resulting establishment of the current
reference design of the primordial gravitational-wave component of the Stage-4
experiment, optimized to achieve our science goals of detecting primordial
gravitational waves for at greater than , or, in the
absence of a detection, of reaching an upper limit of at CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note:
text overlap with arXiv:1907.0447
Impact of electrical contacts design and materials on the stability of Ti superconducting transition shape
The South Pole Telescope SPT-3G camera utilizes Ti/Au transition edge sensors (TESs). A key requirement for these sensors is reproducibility and long-term stability of the superconducting (SC) transitions. Here, we discuss the impact of electrical contacts design and materials on the shape of the SC transitions. Using scanning electron microscope, atomic force microscope, and optical differential interference contrast microscopy, we observed the presence of unexpected defects of morphological nature on the titanium surface and their evolution in time in proximity to Nb contacts. We found direct correlation between the variations of the morphology and the SC transition shape. Experiments with different diffusion barriers between TES and Nb leads were performed to clarify the origin of this problem. We have demonstrated that the reproducibility of superconducting transitions can be significantly improved by preventing diffusion processes in the TESâleads contact areas
Performance and characterization of the SPT-3G digital frequency-domain multiplexed readout system using an improved noise and crosstalk model
The third-generation South Pole Telescope camera (SPT-3G) improves upon its predecessor (SPTpol) by an order of magnitude increase in detectors on the focal plane. The technology used to read out and control these detectors, digital frequency-domain multiplexing (DfMUX), is conceptually the same as used for SPTpol, but extended to accommodate more detectors. A nearly 5Ă expansion in the readout operating bandwidth has enabled the use of this large focal plane, and SPT-3G performance meets the forecasting targets relevant to its science objectives. However, the electrical dynamics of the higher-bandwidth readout differ from predictions based on models of the SPTpol system due to the higher frequencies used and parasitic impedances associated with new cryogenic electronic architecture. To address this, we present an updated derivation for electrical crosstalk in higher-bandwidth DfMUX systems and identify two previously uncharacterized contributions to readout noise, which become dominant at high bias frequency. The updated crosstalk and noise models successfully describe the measured crosstalk and readout noise performance of SPT-3G. These results also suggest specific changes to warm electronics component values, wire-harness properties, and SQUID parameters, to improve the readout system for future experiments using DfMUX, such as the LiteBIRD space telescope
CMB-S4
We describe the stage 4 cosmic microwave background ground-based experiment CMB-S4
CMB-S4: Forecasting Constraints on Primordial Gravitational Waves
Abstract: CMB-S4âthe next-generation ground-based cosmic microwave background (CMB) experimentâis set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2â3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5Ï, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL
SPT-3G+: mapping the high-frequency cosmic microwave background using kinetic inductance detectors
We present the design and science goals of SPT-3G+, a new camera for the South Pole Telescope, which will consist of a dense array of 34100 kinetic inductance detectors measuring the cosmic microwave background (CMB) at 220, 285 and 345 GHz. The SPT-3G+ dataset will enable new constraints on the process of reionization, including measurements of the patchy kinematic Sunyaev-Zeldovich effect and improved constraints on the optical depth due to reionization. At the same time, it will serve as a pathfinder for the detection of Rayleigh scattering, which could allow future CMB surveys to constrain cosmological parameters better than from the primary CMB alone. In addition, the combined, multi-band SPT-3G and SPT-3G+ survey data, will have several synergies that enhance the original SPT-3G survey, including: extending the redshift-reach of SZ cluster surveys to z > 2; understanding the relationship between magnetic fields and star formation in our Galaxy; improved characterization of the impact of dust on inflationary B-mode searches; and characterizing astrophysical transients at the boundary between mm and sub-mm wavelengths. Finally, the modular design of the SPT-3G+ camera allows it to serve as an on-sky demonstrator for new detector technologies employing microwave readout, such as the on-chip spectrometers that we expect to deploy during the SPT-3G+ survey. In this paper, we describe the science goals of the project and the key technology developments that enable its powerful yet compact design
- âŠ