52 research outputs found
Symbiotic nutrient cycling enables the long-term survival of Aiptasia in the absence of heterotrophic food sources
Phototrophic Cnidaria are mixotrophic organisms that can complement their heterotrophic diet with nutrients assimilated by their algal endosymbionts. Metabolic models suggest that the translocation of photosynthates and their derivatives from the algae may be sufficient to cover the metabolic energy demands of the host. However, the importance of heterotrophy to the nutritional budget of these holobionts remains unclear. Here, we report on the long-term survival of the photosymbiotic anemone Aiptasia in the absence of heterotrophic food sources. Following one year of heterotrophic starvation, these anemones remained fully viable but showed an 85 % reduction in biomass compared to their regularly fed counterparts. This shrinking was accompanied by a reduction in host protein content and algal density, indicative of severe nitrogen limitation. Nonetheless, isotopic labeling experiments combined with NanoSIMS imaging revealed that the contribution of algal-derived nutrients to the host metabolism remained unaffected due to an increase in algal photosynthesis and more efficient carbon translocation. Taken together, our results suggest that, on a one- year timescale, heterotrophic feeding is not essential to fulfilling the energy requirements of the holobiont. But, while symbiotic nutrient cycling effectively retains carbon in the holobiont over long time scales, our data suggest that heterotrophic feeding is a critical source of nitrogen required for holobiont growth under oligotrophic conditions
Simultaneous Measurements of Dinitrogen Fixation and Denitrification Associated With Coral Reef Substrates : Advantages and Limitations of a Combined Acetylene Assay
Nitrogen (N) cycling in coral reefs is of key importance for these oligotrophic ecosystems, but knowledge about its pathways is limited. While dinitrogen (N-2) fixation is comparably well studied, the counteracting denitrification pathway is under-investigated, mainly because of expensive and relatively complex experimental techniques currently available. Here, we combined two established acetylene-based assays to one single setup to determine N-2-fixation and denitrification performed by microbes associated with coral reef substrates/organisms simultaneously. Accumulating target gases (ethylene for N-2-fixation, nitrous oxide for denitrification) were measured in gaseous headspace samples via gas chromatography. We measured N-2-fixation and denitrification rates of two Red Sea coral reef substrates (filamentous turf algae, coral rubble), and demonstrated, for the first time, the co-occurrence of both N-cycling processes in both substrates. N-2-fixation rates were up to eight times higher during the light compared to the dark, whereas denitrification rates during dark incubations were stimulated for turf algae and suppressed for coral rubble compared to light incubations. Our results highlight the importance of both substrates in fixing N, but their role in relieving N is potentially divergent. Absolute N-2-fixation rates of the present study correspond with rates reported previously, even though likely underestimated due to an initial lag phase. Denitrification is also presumably underestimated due to incomplete nitrous oxide inhibition and/or substrate limitation. Besides these inherent limitations, we show that a relative comparison of N-2-fixation and denitrification activity between functional groups is possible. Thus, our approach facilitates cost-efficient sample processing in studies interested in comparing relative rates of N-2-fixation and denitrification.Peer reviewe
Standardized Short-Term Acute Heat Stress Assays Resolve Historical Differences in Coral Thermotolerance Across Microhabitat Reef Sites
Coral bleaching is one of the main drivers of reef degradation. Most corals bleach and suffer mortality at just 1–2°C above their maximum monthly mean temperatures, but some species and genotypes resist or recover better than others. Here, we conducted a series of 18‐hr short‐term acute heat stress assays side‐by‐side with a 21‐day long‐term heat stress experiment to assess the ability of both approaches to resolve coral thermotolerance differences reflective of in situ reef temperature thresholds. Using a suite of physiological parameters (photosynthetic efficiency, coral whitening, chlorophyll a , host protein, algal symbiont counts, and algal type association), we assessed bleaching susceptibility of Stylophora pistillata colonies from the windward/exposed and leeward/protected sites of a nearshore coral reef in the central Red Sea, which had previously shown differential mortality during a natural bleaching event. Photosynthetic efficiency was most indicative of the expected higher thermal tolerance in corals from the protected reef site, denoted by an increased retention of dark‐adapted maximum quantum yields at higher temperatures. These differences were resolved using both experimental setups, as corroborated by a positive linear relationship, not observed for the other parameters. Notably, short‐term acute heat stress assays resolved per‐colony (genotype) differences that may have been masked by acclimation effects in the long‐term experiment. Using our newly developed portable experimental system termed the Coral Bleaching Automated Stress System (CBASS), we thus highlight the potential of mobile, standardized short‐term acute heat stress assays to resolve fine‐scale differences in coral thermotolerance. Accordingly, such a system may be suitable for large‐scale determination and complement existing approaches to identify resilient genotypes/reefs for downstream experimental examination and prioritization of reef sites for conservation/restoration. Development of such a framework is consistent with the recommendations of the National Academy of Sciences and the Reef Restoration and Adaptation Program committees for new intervention and restoration strategies
Heat stress reduces the contribution of diazotrophs to coral holobiont nitrogen cycling
Efficient nutrient cycling in the coral-algal symbiosis requires constant but limited nitrogen availability. Coral-associated diazotrophs, i.e., prokaryotes capable of fixing dinitrogen, may thus support productivity in a stable coral-algal symbiosis but could contribute to its breakdown when overstimulated. However, the effects of environmental conditions on diazotroph communities and their interaction with other members of the coral holobiont remain poorly understood. Here we assessed the effects of heat stress on diazotroph diversity and their contribution to holobiont nutrient cycling in the reef-building coral Stylophora pistillata from the central Red Sea. In a stable symbiotic state, we found that nitrogen fixation by coral-associated diazotrophs constitutes a source of nitrogen to the algal symbionts. Heat stress caused an increase in nitrogen fixation concomitant with a change in diazotroph communities. Yet, this additional fixed nitrogen was not assimilated by the coral tissue or the algal symbionts. We conclude that although diazotrophs may support coral holobiont functioning under low nitrogen availability, altered nutrient cycling during heat stress abates the dependence of the coral host and its algal symbionts on diazotroph-derived nitrogen. Consequently, the role of nitrogen fixation in the coral holobiont is strongly dependent on its nutritional status and varies dynamically with environmental conditions
Nitrogen fixation and denitrification activity differ between coral- and algae-dominated Red Sea reefs
Coral reefs experience phase shifts from coral- to algae-dominated benthic communities, which could affect the interplay between processes introducing and removing bioavailable nitrogen. However, the magnitude of such processes, i.e., dinitrogen (N-2) fixation and denitrification levels, and their responses to phase shifts remain unknown in coral reefs. We assessed both processes for the dominant species of six benthic categories (hard corals, soft corals, turf algae, coral rubble, biogenic rock, and reef sands) accounting for>98% of the benthic cover of a central Red Sea coral reef. Rates were extrapolated to the relative benthic cover of the studied organisms in co-occurring coral- and algae-dominated areas of the same reef. In general, benthic categories with high N-2 fixation exhibited low denitrification activity. Extrapolated to the respective reef area, turf algae and coral rubble accounted for>90% of overall N-2 fixation, whereas corals contributed to more than half of reef denitrification. Total N-2 fixation was twice as high in algae- compared to coral-dominated areas, whereas denitrification levels were similar. We conclude that algae-dominated reefs promote new nitrogen input through enhanced N-2 fixation and comparatively low denitrification. The subsequent increased nitrogen availability could support net productivity, resulting in a positive feedback loop that increases the competitive advantage of algae over corals in reefs that experienced a phase shift.Peer reviewe
Nutrient pollution enhances productivity and framework dissolution in algae- but not in coral-dominated reef communities
Ecosystem services provided by coral reefs may be susceptible to the combined effects of benthic species shifts and anthropogenic nutrient pollution, but related field studies are scarce. We thus investigated in situ how dissolved inorganic nutrient enrichment, maintained for two months, affected community-wide biogeochemical functions of intact coral- and degraded algae-dominated reef patches in the central Red Sea. Results from benthic chamber incubations revealed 87% increased gross productivity and a shift from net calcification to dissolution in algae-dominated communities after nutrient enrichment, but the same processes were unaffected by nutrients in neighboring coral communities. Both community types changed from net dissolved organic nitrogen sinks to sources, but the increase in net release was 56% higher in algae-dominated communities. Nutrient pollution may, thus, amplify the effects of community shifts on key ecosystem services of coral reefs, possibly leading to a loss of structurally complex habitats with carbonate dissolution and altered nutrient recycling.Peer reviewe
Projecting coral responses to intensifying marine heatwaves under ocean acidification
Over this century, coral reefs will run the gauntlet of climate change, as marine heatwaves (MHWs) become more intense and frequent, and ocean acidification (OA) progresses. However, we still lack a quantitative assessment of how, and to what degree, OA will moderate the responses of corals to MHWs as they intensify throughout this century. Here, we first projected future MHW intensities for tropical regions under three future greenhouse gas emissions scenario (representative concentration pathways, RCP2.6, RCP4.5 and RCP8.5) for the near-term (2021–2040), mid-century (2041–2060) and late-century (2081–2100). We then combined these MHW intensity projections with a global data set of 1,788 experiments to assess coral attribute performance and survival under the three emissions scenarios for the near-term, mid-century and late-century in the presence and absence of OA. Although warming and OA had predominately additive impacts on the coral responses, the contribution of OA in affecting most coral attributes was minor relative to the dominant role of intensifying MHWs. However, the addition of OA led to greater decreases in photosynthesis and survival under intermediate and unrestricted emissions scenario for the mid- and late-century than if intensifying MHWs were considered as the only driver. These results show that role of OA in modulating coral responses to intensifying MHWs depended on the focal coral attribute and extremity of the scenario examined. Specifically, intensifying MHWs and OA will cause increasing instances of coral bleaching and substantial declines in coral productivity, calcification and survival within the next two decades under the low and intermediate emissions scenario. These projections suggest that corals must rapidly adapt or acclimatize to projected ocean conditions to persist, which is far more likely under a low emissions scenario and with increasing efforts to manage reefs to enhance resilience
Integrating environmental variability to broaden the research on coral responses to future ocean conditions
Our understanding of the response of reef-building corals to changes in their physical environment is largely based on laboratory experiments, analysis of long-term field data, and model projections. Experimental data provide unique insights into how organisms respond to variation of environmental drivers. However, an assessment of how well experimental conditions cover the breadth of environmental conditions and variability where corals live successfully is missing. Here, we compiled and analyzed a globally distributed dataset of in-situ seasonal and diurnal variability of key environmental drivers (temperature, pCO2, and O2) critical for the growth and livelihood of reef-building corals. Using a meta-analysis approach, we compared the variability of environmental conditions assayed in coral experimental studies to current and projected conditions in their natural habitats. We found that annual temperature profiles projected for the end of the 21st century were characterized by distributional shifts in temperatures with warmer winters and longer warm periods in the summer, not just peak temperatures. Furthermore, short-term hourly fluctuations of temperature and pCO2 may regularly expose corals to conditions beyond the projected average increases for the end of the 21st century. Coral reef sites varied in the degree of coupling between temperature, pCO2, and dissolved O2, which warrants site-specific, differentiated experimental approaches depending on the local hydrography and influence of biological processes on the carbonate system and O2 availability. Our analysis highlights that a large portion of the natural environmental variability at short and long timescales is underexplored in experimental designs, which may provide a path to extend our understanding on the response of corals to global climate change
Nitrogen cycling in corals: the key to understanding holobiont functioning?
Corals are animals that form close mutualistic associations with endosymbiotic photosynthetic algae of the genus Symbiodinium. Together they provide the calcium carbonate framework of coral reef ecosystems. The importance of the microbiome (i.e., bacteria, archaea, fungi, and viruses) to holobiont functioning has only recently been recognized. Given that growth and density of Symbiodinium within the coral host is highly dependent on nitrogen availability, nitrogen-cycling microbes may be of fundamental importance to the stability of the coral–algae symbiosis and holobiont functioning, in particular under nutrient-enriched and -depleted scenarios. We summarize what is known about nitrogen cycling in corals and conclude that disturbance of microbial nitrogen cycling may be tightly linked to coral bleaching and disease
- …