8 research outputs found

    Branched polymers via ROMP of termimers

    Get PDF
    Today's olefin metathesis catalysts show high reactivity, selectivity, and functional group tolerance and allow the design of new syntheses of precisely functionalized polymers. Here the synthesis of a new end-capping reagent is investigated allowing the introduction of a highly reactive activated ester end-group at the polymer chain end as well as its prefunctionalization to directly introduce functional moieties. The versatility of this new end-capping reagent is demonstrated by utilizing it to synthesize a so-called termimer (a monomer with termination capabilities). Copolymerization of a norbornene derivative with the termimer leads to hyperbranched ring-opening metathesis polymerization polymers as proven by gel permeation chromatography and MALDI-ToF-(matrix-assisted laser desorption/ionization time of flight) mass spectrometry

    ROMP copolymers for orthogonal click functionalizations

    Get PDF
    The ring-opening metathesis polymerization using ruthenium carbene initiators developed by Grubbs et al. is one of the most functional group tolerant living polymerization methods known. One of the most used postpolymerization functionalization methods used today is the copper-catalyzed 1,3-dipolar cycloaddition between alkynes and organic azides. Organic azides are, however, not tolerated by ruthenium carbene initiators, and nonprotected alkynes have been shown to slow down the propagation reaction or react with the propagating species leading to broad molecular weight distributions. Here we report the copolymer synthesis of three orthogonally functionalizable monomers: one carrying an activated pentafluorophenyl ester, one a maleimide unit, and a third one a trialkylsilyl-protected alkyne. From these monomers, statistical terpolymers as well as diblock copolymers were synthesized with different molecular weights and monomer compositions or block ratios, respectively. Excellent control over molecular weight and molecular weight distribution could be achieved using Grubbs’ first-generation ruthenium carbene initiator. Herein we present the synthesis and orthogonal triple postpolymerization functionalization of these copolymers

    Microplastics ::from anthropogenic to natural

    No full text
    In the context of the ongoing discussion of accumulating plastic debris in the environment, this article summarizes recent reports on the topic of microplastic pollution. Moreover, it gives an overview of the results from the activities of the research group for Biotechnology and Sustainable Chemistry of the Institute of Life Technologies at the HES-SO ValaisWallis concerning the fabrication of biodegradable microstructured plastics and microplastics from renewable resources. Polyhydroxyalkanoate biopolyesters are proposed as one suitable alternative in specific applications to reduce the use of persistent plastics. Standard techniques are described that have been successfully applied to produce porous materials, fibers and particles in the micro- and nanometer range

    Tailored biosynthesis of polyhydroxyalkanoates in chemostat cultures

    No full text
    Polyhydroxyalkanoates (PHAs) are accumulated intracellularly by many bacteria and serve as a carbon and energy storage compound. PHAs are polyesters of high molecular weight and can be isolated by solvent extraction and precipitation in antisolvents. The material properties of PHAs are of great interest due to the inherent biodegradability and excellent biocompatibility. To date, more than 150 different PHA monomers have been described in literature and it has been found that the monomeric unit composition significantly influences the physico-chemical properties of PHAs. The monomer composition may be controlled to some extent by the choice of the PHA production strain but also by the cultivation conditions and the carbon substrate/PHA precursor supply. In previous studies, it has been shown that the most reproducible production method of PHA is the chemostat cultivation of suitable bacteria under multiple nutrient limited growth conditions. This chapter is dedicated to provide step-by step instructions to produce PHAs in a chemostat culture and specifically describes how the composition of PHA copolymers can be tailored during biosynthesis, as well as a set of analytical tools and methods to characterize PHAs

    Influence of unusual co-substrates on the biosynthesis of medium-chain-length polyhydroxyalkanoates produced in multistage chemostat

    No full text
    A two-stage chemostat cultivation was used to investigate the biosynthesis of functionalized medium-chain-length polyhydroxyalkanoate (mcl-PHA) in the ÎČ-oxidation weakened strain of Pseudomonas putida KTQQ20. Chemostats were linked in sequence and allowed separation of biomass production in the first stage from the PHA synthesis in the second stage. Four parallel reactors in the second stage provided identical growth conditions and ensured that the only variable was the ratio of decanoic acid (C10) to an unusual PHA monomer precursor, such as 10-undecenoic acid (C11:1) or phenylvaleric acid (PhVA). Obtained PHA content was in the range of 10 to 25 wt%. When different ratios of C10 and C11:1 were fed to P. putida, the produced PHA had a slightly higher molar ratio in favor of C11:1-based 3-hydroxy-10-undecenoate. However, in case of PhVA a significantly lower incorporation of 3-hydroxy-5-phenylvalerate over 3-hydroxydecanoate took place when compared to the ratio of their precursors in the feed medium. A result that is explained by a less efficient uptake of PhVA compared to C10 and a 24% lower yield of polymer from the aromatic fatty acid (yPHA−MPhVA = 0.25). In addition, PHA isolated from cultivations with PhVA resulted in the number average molecular weight Mn two times lower than the PHA produced from C10 alone. Detection of products from PhVA metabolism in the culture supernatant showed that uptaken PhVA was not entirely converted into PHA, thus explaining the difference in the yield polymer from substrate. It was concluded that PhVA or its related metabolites increased the chain transfer rate during PHA biosynthesis in P. putida KTQQ20, resulting in a reduction of the polymer molecular weight

    ROMP Copolymers for Orthogonal Click Functionalizations

    No full text
    The ring-opening metathesis polymerization using ruthenium carbene initiators developed by Grubbs et al. is one of the most functional group tolerant living polymerization methods known. One of the most used postpolymerization functionalization methods used today is the copper-catalyzed 1,3-dipolar cycloaddition between alkynes and organic azides. Organic azides are, however, not tolerated by ruthenium carbene initiators, and nonprotected alkynes have been shown to slow down the propagation reaction or react with the propagating species leading to broad molecular weight distributions. Here we report the copolymer synthesis of three orthogonally functionalizable monomers: one carrying an activated pentafluorophenyl ester, one a maleimide unit, and a third one a trialkylsilyl-protected alkyne. From these monomers, statistical terpolymers as well as diblock copolymers were synthesized with different molecular weights and monomer compositions or block ratios, respectively. Excellent control over molecular weight and molecular weight distribution could be achieved using Grubbs’ first-generation ruthenium carbene initiator. Herein we present the synthesis and orthogonal triple postpolymerization functionalization of these copolymers

    Polyethylenimine Is a Strong Inhibitor of Human Papillomavirus and Cytomegalovirus Infection

    Get PDF
    Polyethylenimines are cationic polymers with potential as delivery vectors in gene therapy and with proven antimicrobial activity. However, the antiviral activity of polyethylenimines has not been addressed in detail thus far. We have studied the inhibitory effects of a linear 25-kDa polyethylenimine on infections with human papillomaviruses and human cytomegaloviruses. Preincubation of cells with polyethylenimine blocked primary attachment of both viruses to cells, resulting in a significant reduction of infection. In addition, the dissemination of human cytomegalovirus in culture cells was efficiently reduced by recurrent administration of polyethylenimine. Polyethylenimine concentrations required for inhibition of human papillomavirus and cytomegalovirus did not cause any cytotoxic effects. Polyethylenimines and their derivatives may thus be attractive molecules for the development of antiviral microbicides
    corecore