658 research outputs found

    A New Method for Evaluating the Carbon Isotope Characteristics of Carbonate Formed Under Cryogenic Conditions Analogous to Mars

    Get PDF
    The two upcoming robotic missions to Mars, Phoenix and MSL, will both have the capability of measuring the carbon isotopic composition of CO2 in the martian atmosphere, as well as possible CO2 trapped in carbonate minerals in the Martian soil. Results from orbital and landed missions now clearly indicate that no large scale deposits of carbonate materials exist at the surface. However, some results from orbital remote sensing have been interpreted to indicate that carbonate minerals are present as fine particles interspersed at low concentrations (approx. 2%) in the martian dust. One likely mechanism for the production of these carbonates is during the freezing of transient water near the surface. Large deposits of near surface ice and photographic evidence for flowing water on the surface suggest that transient melting and refreezing of H2O is an active process on Mars. Any exposure of these fluids to the CO2 rich atmosphere should al-low the production of HCO3- solutions. Carbonates are likely precipitates from these solutions during freezing as extensive CO2 degassing, driven by the fluid s decreasing volume, drives CO2 out. This rapid CO2 degassing increases the pH of the solution and drives carbonate precipitation. It has been shown in previous studies that this rapid CO2 degassing also results in a kinetic isotopic fractionation where the CO2 gas has a much lighter isotopic composition causing a large isotope enrichment of C-13 in the precipitated carbonate. This kinetic isotope enrichment may be very common in the current martian environment, and may be a very important factor in understanding the very high deltaC-13 values of carbonates found in the martian meteorites. However, while previous studies have succeeded in generally quantifying the magnitude of this effect, detailed studies of the consistency of this effect, and the freezing rates needed to produce it are needed to understand any carbon isotope analyses from carbonate minerals in the martian soil or dust. This study demonstrates an innovative new method for measuring the isotopic composition of gas evolved from the freezing of carbonate solutions in real time, which allows for a much clearer view of the chemical processes involved. This method now sets the stage for detailed analysis of the chemical and isotopic mechanisms that produce cryogenic carbonates

    Role of Adaptor TrfA and ClpPC in Controlling Levels of SsrA-Tagged Proteins and Antitoxins in Staphylococcus aureus

    Get PDF
    Staphylococcus aureus responds to changing extracellular environments in part by adjusting its proteome through alterations of transcriptional priorities and selective degradation of the preexisting pool of proteins. In Bacillus subtilis, the proteolytic adaptor protein MecA has been shown to play a role in assisting with the proteolytic degradation of proteins involved in competence and the oxidative stress response. However, the targets of TrfA, the MecA homolog in S. aureus, have not been well characterized. In this work, we investigated how TrfA assists chaperones and proteases to regulate the proteolysis of several classes of proteins in S. aureus. By fusing the last 3 amino acids of the SsrA degradation tag to Venus, a rapidly folding yellow fluorescent protein, we obtained both fluorescence-based and Western blot assay-based evidence that TrfA and ClpCP are the adaptor and protease, respectively, responsible for the degradation of the SsrA-tagged protein in S. aureus. Notably, the impact of TrfA on degradation was most prominent during late log phase and early stationary phase, due in part to a combination of transcriptional regulation and proteolytic degradation of TrfA by ClpCP. We also characterized the temporal transcriptional regulation governing TrfA activity, wherein Spx, a redox-sensitive transcriptional regulator degraded by ClpXP, activates trfA transcription while repressing its own promoter. Finally, the scope of TrfA-mediated proteolysis was expanded by identifying TrfA as the adaptor that works with ClpCP to degrade antitoxins in S. aureus. Together, these results indicate that the adaptor TrfA adds temporal nuance to protein degradation by ClpCP in S. aureus

    In Vivo Bioluminescence Imaging To Evaluate Systemic and Topical Antibiotics against Community-Acquired Methicillin-Resistant Staphylococcus aureus-Infected Skin Wounds in Mice

    Get PDF
    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) frequently causes skin and soft tissue infections, including impetigo, cellulitis, folliculitis, and infected wounds and ulcers. Uncomplicated CA-MRSA skin infections are typically managed in an outpatient setting with oral and topical antibiotics and/or incision and drainage, whereas complicated skin infections often require hospitalization, intravenous antibiotics, and sometimes surgery. The aim of this study was to deve

    Antarctic Mirabilite Mounds as Mars Analogs: The Lewis Cliffs Ice Tongue Revisited

    Get PDF
    It has been proposed, based on geomorphic and geochemical arguments, that subsurface water has played an important role in the history of water on the planet Mars [1]. Subsurface water, if present, could provide a protected and long lived environment for potential life. Discovery of gullies [2] and recurring slopes [3] on Mars suggest the potential for subsurface liquid water or brines. Recent attention has also focused on small (< approx. 1km dia.) mound-like geomorphic features discovered within the mid to high latitudes on the surface of Mars which may be caused by eruptions of subsurface fluids [4, 5]. We have identified massive but highly localized Na-sulfate deposits (mirabilite mounds, Na2SO4 .10H2O) that may be derived from subsurface fluids and may provide insight into the processes associated with subsurface fluids on Mars. The mounds are found on the end moraine of the Lewis Cliffs Ice Tongue (LCIT) [6] in the Transantarctic Mountains, Antarctica, and are potential terrestrial analogs for mounds observed on the martian surface. The following characteristics distinguish LCIT evaporite mounds from other evaporite mounds found in Antarctic coastal environments and/or the McMurdo Dry Valleys: (1) much greater distance from the open ocean (approx.500 km); (2) higher elevation (approx.2200 meters); and (3) colder average annual temperature (average annual temperature = -30 C for LCIT [7] vs. 20 C at sea level in the McMurdo region [8]. Furthermore, the recent detection of subsurface water ice (inferred as debris-covered glacial ice) by the Mars Reconnaissance Orbiter [9] supports the use of an Antarctic glacial environment, particularly with respect to the mirabilite deposits described in this work, as an ideal terrestrial analog for understanding the geochemistry associated with near-surface martian processes. S and O isotopic compositions

    INTROGRESSION OF COYOTE MITOCHONDRIAL DNA INTO SYMPATRIC NORTH AMERICAN GRAY WOLF POPULATIONS

    Get PDF
    Mitochondrial DNA (mtDNA) genotypes of gray wolves and coyotes from localities throughout North America were determined using restriction fragment length polymorphisms. Of the 13 genotypes found among the wolves, 7 are clearly of coyote origin, indicating that genetic transfer of coyote mtDNA into wolf populations has occurred through hybridization. The transfer of mtDNA appears unidirectional from coyotes into wolves because no coyotes sampled have a wolf-derived mtDNA genotype. Wolves possessing coyote-derived genotypes are confined to a contiguous geographic region in Minnesota, Ontario, and Quebec, and the frequency of coyote- type mtDNA in these wolf populations is high (\u3e 500%). The ecological history of the hybrid zone suggests that hybridization is taking place in regions where coyotes have only recently become abundant following conversion of forests to farmlands. Dispersing male wolves unable to find conspecific mates may be pairing with female coyotes in deforested areas bordering wolf territories. Our results demonstrate that closely related species of mobile terrestrial vertebrates have the potential for extensive genetic exchange when ecological conditions change suddenly

    Martian Atmospheric Methane Plumes from Meteor Shower Infall: A Hypothesis

    Get PDF
    Methane plumes in the martian atmosphere have been detected using Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. To date, none of these phenomena have been found to reliably correlate with the detection of methane plumes. An additional source exists, however: meteor showers could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, depositing freshly disaggregated meteor shower material in a regional concentration. The material generates methane via UV photolysis, resulting in a localized "plume" of short-lived methane

    Smectite Formation in the Presence of Sulfuric Acid: Implications for Acidic Smectite Formation on Early Mars

    Get PDF
    The excess of orbital detection of smectite deposits compared to carbonate deposits on the martian surface presents an enigma because smectite and carbonate formations are both favored alteration products of basalt under neutral to alkaline conditions. We propose that Mars experienced acidic events caused by sulfuric acid (H2SO4) that permitted phyllosilicate, but inhibited carbonate, formation. To experimentally verify this hypothesis, we report the first synthesis of smectite from Mars-analogue glass-rich basalt simulant (66 wt% glass, 32 wt% olivine, 2 wt% chromite) in the presence of H2SO4 under hydrothermal conditions (approximately 200 degC). Smectites were analyzed by X-ray diffraction, Mossbauer spectroscopy, visible and near-infrared reflectance spectroscopy and electron microprobe to characterize mineralogy and chemical composition. Solution chemistry was determined by Inductively Coupled Plasma Mass Spectrometry. Basalt simulant suspensions in 11-42 mM H2SO4 were acidic with pH less than or equal to 2 at the beginning of incubation and varied from acidic (pH 1.8) to mildly alkaline (pH 8.4) at the end of incubation. Alteration of glass phase during reaction of the basalt simulant with H2SO4 led to formation of the dioctahedral smectite at final pH approximately 3 and trioctahedral smectite saponite at final pH approximately 4 and higher. Anhydrite and hematite formed in the final pH range from 1.8 to 8.4 while natroalunite was detected at pH 1.8. Hematite was precipitated as a result of oxidative dissolution of olivine present in Adirondack basalt simulant. Formation of secondary phases, including smectite, resulted in release of variable amounts of Si, Mg, Na and Ca while solubilization of Al and Fe was low. Comparison of mineralogical and solution chemistry data indicated that the type of smectite (i.e., dioctahedral vs trioctahedral) was likely controlled by Mg leaching from altering basalt and substantial Mg loss created favorable conditions for formation of dioctahedral smectite. We present a model for global-scale smectite formation on Mars via acid-sulfate conditions created by the volcanic outgassing of SO2 in the Noachian and early Hesperian

    Electron and Neutron Electric Dipole Moments in the Focus Point Scenario of SUGRA Model

    Get PDF
    We estimate the electron and neutron electric dipole moments in the focus point scenario of the minimal SUGRA model corresponding to large sfermion masses and moderate to large tanβ\tan\beta. There is a viable region of moderate fine-tuning in the parameter space, around tanβ5\tan\beta \simeq 5, where the experimental limits on these electric dipole moments can be satisfied without assuming unnaturally small phase angles. But the fine-tuning constraints become more severe for tanβ>10\tan\beta > 10.Comment: 16 pages, LaTeX, 4 postscript figures. Very minor changes made in only a few sentences for clarification. Final version to appear in Phys. Rev.
    corecore