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Introduction:  Methane plumes in the martian at-

mosphere have been detected using Earth-based spec-
troscopy [1-4], the Planetary Fourier Spectrometer on 
the ESA Mars Express mission [5], and the NASA 
Mars Science Laboratory [6]. The methane’s origin 
remains a mystery, with proposed sources including 
volcanism [7], exogenous sources like impacts [8] and 
interplanetary dust [2,6], aqueous alteration of olivine 
in the presence of carbonaceous material [9], release 
from ancient deposits of methane clathrates [10], 
and/or biological activity [2]. To date, none of these 
phenomena have been found to reliably correlate with 
the detection of methane plumes [6]. An additional 
source exists, however: meteor showers could generate 
martian methane via UV pyrolysis of carbon-rich infall 
material [11]. We find a correlation between the dates 
of Mars/cometary orbit encounters and detections of 
methane on Mars. We hypothesize that cometary de-
bris falls onto Mars during these interactions, deposit-
ing freshly disaggregated meteor shower material in a 
regional concentration. The material generates me-
thane via UV photolysis [12,13], resulting in a local-
ized “plume” of short-lived methane. 

Multiple Lines of Evidence:  
1) Temporal Correlation Between Cometary Inter-

actions and Methane Detection: It is important to de-
termine the source of martian methane in order to ex-
plore the geochemical and/or astrobiological implica-
tions of its formation mechanism(s). For this reason 
investigators have attempted to identify correlations 
between the appearance of methane and factors such as 
martian seasons [14, 15], proximity to martian volca-
noes [3,14], proximity to hydrated minerals [4], local 

winds, diurnal time, small-scale detection variations 
[6], etc. To date no convincing correlations have 
emerged. We collected the dates of historical methane 
detections in literature to investigate additional poten-
tial correlations, and found a temporal correlation be-
tween methane plume detections and the dates for 
Mars/comet orbit encounters [16,17] (Figure 1). Spe-
cifically, all known methane reports were detected 
within 16 days after an encounter between Mars’ orbit 
and the orbit of a comet capable of producing a meteor 
shower on Mars [16,17] (Table 2 and Figure 2, follow-
ing page). It is important to note that this correlation 
occurs between the comet/Mars interaction date and 
the detection date of a methane plume – it is possible 
that the methane plume occurred on the date of the 
encounter itself and was not noticed until the meas-
urement was performed up to 16 days later. 

2) Spatial Correlation Between Meteor Showers 
and Plume Size: Meteor showers arise from interac-
tions between a planet and debris scattered along the 
orbit of a comet or asteroid. Meteor showers may per-
sist for days at a very low meteor rate, but often feature 
strong meteor rates for a period of a few hours as the 
planet encounters the relatively dense debris near the 
parent body’s orbit [18]. This short-lived activity peak 
results in deposition of most of a meteor shower’s ma-
terial on a regional (as opposed to global) area on the 
planet. This effect has been directly noted on Mars. 
Crismani [19] reported that the MAVEN spacecraft 
detected a regional and sudden appearance of Mg+ 
consistent with a meteor shower during the 08 Mar 
2016 encounter between Mars and the orbit of C/2007 
H2 Skiff, as predicted in [11]. MAVEN is not designed 

Figure 1: Methane plume 
noted on Mars by [4]. 
Four days before the 
measurement, Mars en-
countered the orbit of 
comet C/2007 H2 Skiff at 
a distance of ~150,000 
km, about half the Earth-
Moon distance [16]. Red 
arrow indicates Mars’ 
movement, and blue ar-
row indicates the motion 
of debris in Skiff’s orbit. 
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to measure methane and could not test for a correlation 
between the meteor shower and the appearance of me-
thane. The comet Skiff is the same comet implicated in 
the methane plume reported by Mumma et al [4] (Fig-
ure 1), during the 2003 Mars/Skiff orbit interaction. 

3) Appearance of High Altitude Dust: Deposition 
of meteor shower material into the martian atmosphere 
may result in optically visible, high altitude dust. 
MAVEN has reported [20] the unexplained appearance 
of dust clouds at altitudes of 150-300 km possibly at-
tributable to meteor shower input. Sanchez-Lavega 
[21] reports two occasions when dust became visible at 
Mars’ limb. One occurred on 17 May 1997, the same 
day as another interaction between Mars and the orbit 
of comet C/2007 H2 Skiff. The other was noted on 12 
Mar 2012, four days after an interaction between Mars 
and the orbit of 275P/Hermann, a comet that is also 
implicated in one of the methane detections by the 
MSL rover (Figure 2). 

4) Methane Loss Rate: It has been noted [3,6] that 
methane loss rates following a plume appear to be 
higher than expected for Mars near-surface atmospher-
ic chemistry. At high altitude, however, Wong et al [7] 
noted that UV photolysis produces CH4 degradation 
rates at altitudes above ~90 km more amenable to ob-
served rates. Meteor shower-based methane production 
should generate methane at a range of altitudes to in-
clude high altitude. And methane detections to date 
have been incapable of detecting the methane’s alti-

tude: Earth-based and Mars orbital observations have 
made measurements through the full thickness of the 
martian atmosphere, and the MSL rover is a point 
measurement. Methane might be produced at higher 
altitudes and diffuse down to the rover, which is con-
sistent with MSL’s measurements in the 1-10 ppb 
range while many methane plumes feature measured 
concentrations in the 10s of ppb [1-6]. 

5) The Parent Body Size/Distance Relationship: Of 
the seven parent bodies implicated in methane plume 
detection (Table 2), the largest and arguably dustiest 
objects (1P/Halley, 5335 Damocles, 13P/Olbers, 
Marsden group comets) interact with Mars at the 
greatest orbital distances (~0.016 to 0.064 AU) while 
the other three, less well known bodies interact at 
shorter distances (~0.0008 to 0.0086 AU). This is not 
proof by itself but is inherently reasonable if these bod-
ies are the source of methane-producing material. 

The hypothesis stated here and in [11] is inherently 
testable, using the missions, instrumentation, and ex-
pertise that currently exist. One method for testing this 
hypothesis would be an extended observing campaign 
of Mars during a period that includes multiple interac-
tions with cometary debris while watching for meteor 
shower activity and the correlated appearance of at-
mospheric methane plumes. 
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Table 2: Historical Mars methane detections shown 
by publication (column 1), observation date (col-
umn 2), and reported methane concentration (col-
umn 3). Column 4 shows the number of days be-
tween a Mars/cometary orbit encounter and the 
methane observation, and column 5 identifies the 
comet encountered. 
 


