51 research outputs found

    I-V curves and intergranular flux creep activation energy in the magnetic superconductor RuSr2GdCu2O8

    Full text link
    A systematic study of I-V characteristic curves for RuSr2GdCu2O8 [Ru-(1212)] is presented, with magnetic fields up to 3 T and 5 K<T<30 K, in the region of the superconducting transition. The activation energy E_{a}(H,T) for flux line depinning was determined by fitting the nonlinear region of the curves using the flux creep model. E_{a}(H,T) was found to vary linearly with temperature, while a power-law dependence on the magnetic field was observed up to H=0.1 T, where an abrupt reduction in its decreasing rate occurs. The extrapolated value, E_{a}(0,0)=50 meV, is twice the reported value for YBa2Cu3O7, but the critical current density J_{C}(0,0)=70 A/cm2 is about one order of magnitude lower. These results are explained as a consequence of the contribution of the magnetization in the grains to the effective field at the intergranular links and to a spin-flop transition of the Ru-sub-lattice.Comment: 4 pages, 3 figure

    Inter- and Intra-granular flux Pinning in Ba(Fe0.91Co0.09)2As2 Superconductors

    Get PDF
    AbstractThermally assisted flux flow (TAFF) and flux pinning energiesare studied in a Ba(Fe0.91Co0.09)2As2 (Tc = 25.3K) sample via resistivity and AC susceptibility measurements in magnetic fields up to 18T. The flux pinning energy U(T,H) is determined from the Arrhenius law. The pinning maxima well determined by resistivity measurements ranged from 1724K at 0 T to 585K at 18 T with a sharp drop off so that U(T=Tc) varied with the applied field H as . The pinning activation energies determined from the AC susceptibility data but were by a factor of three higher, which is explained here. Both inter- and intra-granular pinning energies are determined in low fields. The onset of TAFF temperature and the crossover temperature Tx from TAFF to flux flow are determined, showing the limitations of the Anderson-Kim model

    Frequency Dependent Flux Dynamics and Activation Energies in Pnictide Bulk (Ba0.56K0.44)Fe2As2 Superconductor

    Get PDF
    AbstractThermally activated flux de-pinning and flux activation de-pinning energies are studied in a (Ba0.56K0.44)Fe2As2 (Tc=38.5K) bulk superconductor in DC magnetic fields up to 18 T. Ac susceptibility was measured as a function of temperature, DC and AC magnetic fields, and frequency. Ac susceptibility curves shift to higher temperatures as the frequency is increased from 75 to 1997Hz in all fields. We model this data by Arrhenius law to determine flux activation energies as a function of AC and DC magnetic fields. The activation energy ranges from 8822K at μ0 Hdc = 0 T to 1100K at 18 T for Hac =80 A/m. The energies drop quickly in a non-linear manner as DC field rises above 0 T and around 1 T, which we describe as pinning transition field, the drop levels and continues more slowly in a linear like manner as DC field approaches to 18 T. Furthermore, the activation energy drops quickly as AC field increases from 80 A/m to 800 A/m at 0 DC field. As the DC field rises above 0, the activation energy has significantly weaker dependence on the AC field amplitude. Extensive map of the de-pinning, or irreversibility, lines shows broad dependence on the magnitude of the small AC field, frequency, in addition to the DC field

    Study of higher-order harmonics of complex ac susceptibility in YB2C3O7−δYB_2C_3O_{7-\delta} thin films by the mutual inductive method

    Full text link
    We have applied the mutual inductive method to study higher-order harmonics of complex ac susceptibility χn=χn′−iχ"n\chi_n=\chi'_n-i\chi"_n for YB_2C_3O_{7-\delta}thinfilmsasfunctionofthetemperatureandtheappliedfield.TheexperimentalresultswerecomparedwithanalyticalandnumericalresultsobtainedfromtheIshida−Mazakimodelandthesolutionoftheintegralequationforthecurrentdensity,respectively.Bothmodelsallowustoreproducedthemainexperimentalfeatures,however,as thin films as function of the temperature and the applied field. The experimental results were compared with analytical and numerical results obtained from the Ishida-Mazaki model and the solution of the integral equation for the current density, respectively. Both models allow us to reproduced the main experimental features, however, as nincreasesthenumericalmodelshowsnotablediscrepancies.Thisfailurecanbeattributedtothecurrent−voltagecharacteristics.Alsothisinvestigationyieldstheactivationenergy increases the numerical model shows notable discrepancies. This failure can be attributed to the current-voltage characteristics. Also this investigation yields the activation energy U_candthecriticalcurrentdensity and the critical current density J_c$ for two samples both at T=0.Comment: 8 pages, 3 figure

    Local origin of the strong field-space anisotropy in the magnetic phase diagrams of Ce1−x_{1-x}Lax_xB6_6 measured in a rotating magnetic field

    Full text link
    Cubic f-electron compounds commonly exhibit highly anisotropic magnetic phase diagrams consisting of multiple long-range ordered phases. Field-driven metamagnetic transitions between them may depend not only on the magnitude, but also on the direction of the applied magnetic field. Examples of such behavior are plentiful among rare-earth borides, such as RB6_6 or RB12_{12} (RR = rare earth). In this work, for example, we use torque magnetometry to measure anisotropic field-angular phase diagrams of La-doped cerium hexaborides, Ce1−x_{1-x}Lax_xB6_6 (xx = 0, 0.18, 0.28, 0.5). One expects that field-directional anisotropy of phase transitions must be impossible to understand without knowing the magnetic structures of the corresponding competing phases and being able to evaluate their precise thermodynamic energy balance. However, this task is usually beyond the reach of available theoretical approaches, because the ordered phases can be noncollinear, possess large magnetic unit cells, involve higher-order multipoles of 4f ions rather than simple dipoles, or just lack sufficient microscopic characterization. Here we demonstrate that the anisotropy under field rotation can be qualitatively understood on a much more basic level of theory, just by considering the crystal-electric-field scheme of a pair of rare-earth ions in the lattice, coupled by a single nearest-neighbor exchange interaction. Transitions between different crystal-field ground states, calculated using this minimal model for the parent compound CeB6, possess field-directional anisotropy that strikingly resembles the experimental phase diagrams. This implies that the anisotropy of phase transitions is of local origin and is easier to describe than the ordered phases themselves.Comment: To be published in Phys. Rev. B; v2: minor typographic correction

    Revealing a 3D Fermi Surface Pocket and Electron-Hole Tunneling in UTe2_{2} with Quantum Oscillations

    Full text link
    Spin triplet superconductor UTe2_{2} is widely believed to host a quasi-two-dimensional Fermi surface, revealed by first principal calculations, photoemission and quantum oscillation measurements. An outstanding question still remains as to the existence of a three-dimensional Fermi surface pocket, which is crucial for our understanding of the exotic superconducting and topological properties of UTe2_{2}. This 3D Fermi surface pocket appears in various theoretical models with different physics origins but has not been detected experimentally. Here for the first time, we provide concrete evidence for a relatively isotropic, small Fermi surface pocket of UTe2_{2} via quantum oscillation measurements. In addition, we observed high frequency quantum oscillations corresponding to electron-hole tunneling between adjacent electron and hole pockets. The coexistence of 2D and 3D Fermi surface pockets, as well as the breakdown orbits, provides a test bed for theoretical models and aid the realization of a unified understanding of superconducting state of UTe2_{2} from the first-principles approach

    Magneto-transport and magnetic susceptibility of SmFeAsO1-xFx (x = 0.0 and 0.20)

    Full text link
    Bulk polycrystalline samples, SmFeAsO and the iso-structural superconducting SmFeAsO0.80F0.20 are explored through resistivity with temperature under magnetic field {\rho}(T, H), AC and DC magnetization (M-T), and Specific heat (Cp) measurements. The Resistivity measurement shows superconductivity for x = 0.20 sample with Tc(onset) ~ 51.7K. The upper critical field, [Hc2(0)] is estimated ~3770kOe by Ginzburg-Landau (GL) theory. Broadening of superconducting transition in magneto transport is studied through thermally activated flux flow in applied field up to 130 kOe. The flux flow activation energy (U/kB) is estimated ~1215K for 1kOe field. Magnetic measurements exhibited bulk superconductivity with lower critical field (Hc1) of ~1.2kOe at 2K. In normal state, the paramagnetic nature of compound confirms no trace of magnetic impurity which orders ferromagnetically. AC susceptibility measurements have been carried out for SmFeAsO0.80F0.20 sample at various amplitude and frequencies of applied AC drive field. The inter-granular critical current density (Jc) is estimated. Specific heat [Cp(T)] measurement showed an anomaly at around 140K due to the SDW ordering of Fe, followed by another peak at 5K corresponding to the antiferromagnetic (AFM) ordering of Sm+3 ions in SmFeAsO compound. Interestingly the change in entropy (marked by the Cp transition height) at 5K for Sm+3 AFM ordering is heavily reduced in case of superconducting SmFeAsO0.80F0.20 sample.Comment: 18 pages text + Figs: comments/suggestions welcome ([email protected]

    Intergranular flux pinning in underdoped and overdoped R(1-x)CaxBa2Cu3Oz (R=Y,Gd; x=0,0.2) samples

    Full text link
    The temperature dependences of AC magnetic susceptibility at different magnetic field amplitudes and frequencies are investigated for underdoped and overdoped R(1-x)Ca(x)Ba(2)Cu(3)O(7-delta)(R=Y; Gd and x=0; 0.2) polycrystalline samples. The activation energy, Ea, for thermally assisted flux flow (TAFF) in intergranular region is determined. It was established that a correlation exists between the intergranular critical current and flux pinning activation energy. In underdoped samples the intergranular current shows S-I-S behaviour and the activation energy is small, while in overdoped samples the intergranular current is changed to S-N-S type and the activation energy increases. 2D pancake vortices are characteristic of underdoped samples, while 3D vortex system exists in overdoped samples. In fact we demonstrate that Ca substitution not only increases carrier concentration, but improves intergranular activation energy for TAFF.Comment: 20 pages including 7 figures and one Table. accepted in Physica

    Physical property characterization of single step synthesized NdFeAsO0.80F0.20 bulk 50K superconductor

    Full text link
    We report an easy single step synthesis route of title compound NdFeAsO0.80F0.20 superconductor having bulk superconductivity below 50 K. The title compound is synthesized via solid-state reaction route by encapsulation in an evacuated (10-3 Torr) quartz tube. Rietveld analysis of powder X-ray diffraction data shows that compound crystallized in tetragonal structure with space group P4/nmm. R(T)H measurements showed superconductivity with Tc (R=0) at 48 K and a very high upper critical field (Hc2) of up to 345 Tesla. Magnetic measurements exhibited bulk superconductivity in terms of diamagnetic onset below 50 K. The lower critical field (Hc1) is around 1000 Oe at 5 K. In normal state i.e., above 60 K, the compound exhibited purely paramagnetic behavior and thus ruling out the presence of any ordered FeOx impurity in the matrix. In specific heat measurements a jump is observed in the vicinity of superconducting transition (Tc) along with an upturn at below T=4 K due to the AFM ordering of Nd+3 ions in the system. The Thermo-electric power (TEP) is negative down to Tc, thus indicating dominant carriers to be of n-type in NdFeAsO0.80F0.20 superconductor. The granularity of the bulk superconducting NdFeAsO0.8F0.2 sample is investigated and the intra and inter grain contributions have been individuated by looking at various amplitude and frequencies of the applied AC drive magnetic field.Comment: 26pages text + Figures: comments/suggestions welcome ([email protected] & http://www.freewebs.com/vpsawana

    Peaceful Returns: Reversing Ethnic Cleansing after the Bosnian War

    Get PDF
    This article questions the conventional wisdom which claims forced migration is irreversible following massive ethnic cleansing campaigns, by investigating durable returns to pre-conflict home communities in Bosnia-Herzegovina. We formulate a set of novel hypotheses on the demographic determinants of return as well as on the role of social capital, nationalist ideology, integration, and war victimization. We use a 2013 Bosnian representative sample with 1,007 respondents to test our hypotheses. The findings support the expectation that gender and age have a major impact on return. Net of other factors, women and those experiencing wartime victimization are less likely to return. Older Bosnians with positive memories of pre-conflict interethnic relations are more likely to return than younger persons or those with negative memories. Finally, ethnic Bosniacs are more likely to return than ethnic Croats or Serbs. More nationalistic internally displaced persons (IDPs) are less likely to return
    • …
    corecore