58 research outputs found

    Scale-dependent desorption of uranium from contaminated subsurface sediments

    Get PDF
    Column experiments were performed to investigate the scale-dependent desorption of uranyl [U(VI)] from a contaminated sediment collected from the Hanford 300 Area at the U.S. Department of Energy (DOE) Hanford Site, Washington. The sediment was a coarse-textured alluvial flood deposit containing significant mass percentage of river cobble. U(VI) was, however, only associated with its minor fine-grained (\u3c2 mm) mass fraction. U(VI) desorption was investigated both from the field-textured sediment using a large column (80 cm length by 15 cm inner diameter) and from its \u3c2 mm U(VI)- associated mass fraction using a small column (10 cm length by 3.4 cm inner diameter). Dynamic advection conditions with intermittent flow and stop-flow events of variable durations were employed to investigate U(VI) desorption kinetics and its scale dependence. A multicomponent kinetic model that integrated a distributed rate of mass transfer with surface complexation reactions successfully described U(VI) release from the fine-grained U(VI)-associated materials. The field-textured sediment in the large column displayed dual-domain tracer-dependent mass transfer properties that affected the breakthrough curves of bromide, pentafluorobenzoic acid (PFBA), and tritium. The tritium breakthrough curve showed stronger nonequilibrium behavior than did PFBA and bromide and required a larger immobile porosity to describe. The dual-domain mass transfer properties were then used to scale the kinetic model of U(VI) desorption developed for the fine-grained materials to describe U(VI) release and reactive transport in the field-textured sediment. Numerical simulations indicated that the kinetic model that was integrated with the dual-domain properties determined from tracer PFBA and Br best described the experimental results. The kinetic model without consideration of the dual-domain properties overpredicted effluent U(VI) concentrations, while the model based on tritium mass transfer underpredicted the rate of U(VI) release. Overall, our results indicated that the kinetics of U(VI) release from the field-textured sediment were different from that of its fine-grained U(VI)-associated mass fraction. However, the desorption kinetics measured on the U(VI)-containing mass fraction could be scaled to describe U(VI) reactive transport in the contaminated field-textured sediment after proper consideration of the physical transport properties of the sediment. The research also demonstrated a modeling approach to integrate geochemical processes into field-scale reactive transport models

    Scale-dependent desorption of uranium from contaminated subsurface sediments

    Get PDF
    Column experiments were performed to investigate the scale-dependent desorption of uranyl [U(VI)] from a contaminated sediment collected from the Hanford 300 Area at the U.S. Department of Energy (DOE) Hanford Site, Washington. The sediment was a coarse-textured alluvial flood deposit containing significant mass percentage of river cobble. U(VI) was, however, only associated with its minor fine-grained (\u3c2 mm) mass fraction. U(VI) desorption was investigated both from the field-textured sediment using a large column (80 cm length by 15 cm inner diameter) and from its \u3c2 mm U(VI)- associated mass fraction using a small column (10 cm length by 3.4 cm inner diameter). Dynamic advection conditions with intermittent flow and stop-flow events of variable durations were employed to investigate U(VI) desorption kinetics and its scale dependence. A multicomponent kinetic model that integrated a distributed rate of mass transfer with surface complexation reactions successfully described U(VI) release from the fine-grained U(VI)-associated materials. The field-textured sediment in the large column displayed dual-domain tracer-dependent mass transfer properties that affected the breakthrough curves of bromide, pentafluorobenzoic acid (PFBA), and tritium. The tritium breakthrough curve showed stronger nonequilibrium behavior than did PFBA and bromide and required a larger immobile porosity to describe. The dual-domain mass transfer properties were then used to scale the kinetic model of U(VI) desorption developed for the fine-grained materials to describe U(VI) release and reactive transport in the field-textured sediment. Numerical simulations indicated that the kinetic model that was integrated with the dual-domain properties determined from tracer PFBA and Br best described the experimental results. The kinetic model without consideration of the dual-domain properties overpredicted effluent U(VI) concentrations, while the model based on tritium mass transfer underpredicted the rate of U(VI) release. Overall, our results indicated that the kinetics of U(VI) release from the field-textured sediment were different from that of its fine-grained U(VI)-associated mass fraction. However, the desorption kinetics measured on the U(VI)-containing mass fraction could be scaled to describe U(VI) reactive transport in the contaminated field-textured sediment after proper consideration of the physical transport properties of the sediment. The research also demonstrated a modeling approach to integrate geochemical processes into field-scale reactive transport models

    The Geochemistry of Technetium: A Summary of the Behavior of an Artificial Element in the Natural Environment

    Get PDF
    Interest in the chemistry of technetium has only increased since its discovery in 1937, mainly because of the large and growing inventory of 99Tc generated during fission of 235U, its environmental mobility in oxidizing conditions, and its potential radiotoxicity. For every ton of enriched uranium fuel (3% 235U) that is consumed at a typical burn-up rate, nearly 1 kg of 99Tc is generated. Thus, the mass of 99Tc produced since 1993 has nearly quadrupled, and will likely to continue to increase if more emphasis is placed on nuclear power to slow the accumulation of atmospheric greenhouse gases. In order to gain a comprehensive understanding of the interaction of 99Tc and the natural environment, we review the sources of 99Tc in the nuclear fuel cycle, its chemical properties, radiochemistry, and biogeochemical behavior. We include an evaluation of the use of Re as a chemical analog of Tc, as well as a summary of the redox potential, thermodynamics, sorption, colloidal behavior, and interaction of humic substances with Tc, and the potential for re-oxidation and remobilization of Tc(IV). What emerges is a more complicated picture of Tc behavior than that of an easily tractable transition of Tc(VII) to Tc(IV) with consequent immobilization. Reducing conditions (+200 to +100 mV Eh) are generally thought necessary to cause reduction of Tc(VII) to Tc(IV), but far more important are the presence of reducing agents, such as Fe(II) sorbed onto mineral grains. Catalysis of Tc(VII) by surface-mediated Fe(II) will bring the mobile Tc(VII) species to a lower oxidation state and will form the relatively insoluble Tc(IV)O2∙nH2O, but even as a solid, equilibrium concentrations of aqueous Tc are nearly a factor of 20× above the EPA set drinking water standards. However, sequestration of Tc(IV) into Fe(III)-bearing phases, such as goethite or other hydrous oxyhydroxides of iron, may ameliorate concerns over the mobility of Tc. Further, the outcome of many studies on terrestrial and marine sediments that are oxidizing overall indicate that Tc is relatively immobile, due to formation of oxygen-depleted microenvironments that develop in response to bacteriological activities. The rate of re-mobilization of Tc from these microenvironments is just beginning to be assessed, but with no firm consensus. Reassessment of the simple models in which Tc is mobilized and immobilized is therefore urged

    Chemical weathering of new pyroclastic deposits from Mt. Merapi (Java), Indonesia.

    Get PDF
    The Java Island, Indonesia with abundant amount of pyroclastic deposits is located in the very active and dynamic Pacific Ring of Fires. Studying the geochemical weathering indices of these pyroclastic deposits is important to get a clear picture about weathering profiles on deposits resulting from the eruption of Mt. Merapi. Immediately after the first phase of the eruption (March to June 2006), moist and leached pyroclastic deposits were collected. These pyroclastic deposits were found to be composed of volcanic glass, plagioclase feldspar in various proportions, orthopyroxene, clinopyroxene, olivine, amphibole and titanomagnetite. The total elemental composition of the bulk samples (including trace elements and heavy metals) was determined by wet chemical methods and X-ray fluorescence (XRF) analyses. Weathering of the pyroclastic deposits was studied using various weathering indices. The Ruxton ratio, weathering index of Parker, Vought resudual index and chemical index of weathering of moist pyroclastic deposits were lower than those of the leached samples, but the alteration indices (chemical and plagioclase) were slightly higher in the moist compared to the leached pyroclastic deposits

    Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    Get PDF
    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sent to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes

    Single Pass Flow-Through (SPFT) Test Results of Fluidized Bed Steam Reforming (FBSR) Waste Forms used for LAW Immobilization-#12252

    Get PDF
    ABSTRACT Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One such immobilization technology being considered is the Fluidized Bed Steam Reforming (FBSR) product, which is granular and will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals. Production of the FBSR mineral product has been demonstrated at the industrial, engineering, and laboratory scales. Single-Pass Flow-Through (SPFT) tests at various flow rates have been conducted with the granular products fabricated using the engineering-and laboratory-scale methods. Results show that the forward dissolution rate for the engineering-scale mineral product is 0.6 (±0.2)×10 -3 g/m 2 d while the forward dissolution rate for the laboratory-scale mineral product is 1.3 (±0.5)×10 -3 g/m 2 d
    corecore