1,132 research outputs found

    Термины родства в русском и сербском языках

    Get PDF
    Category of kinship taken in different aspects is the object of studies of different sciences: biology, sociology, geneology, ethnography, culturology, linguistics. Language data by all means, are of primarily importance in kinship research. Structural changes of kinship relations (including ttheir exoression in languages) are crutial to make a comparative study.Категория родства в разных ее аспектах является объектом изучения разных наук: биологии, социологии, генеалогии, этнографии, культурологии, лингвистики. Языковые данные в изучении родства, безусловно, имеют первостепенное значение. Изменение структуры родственных связей (в том числе и их языковое выражение) представляется интересным для описания, особенно в сопоставительном аспекте

    Structural Basis for the Restoration of TCR Recognition of an MHC Allelic Variant by Peptide Secondary Anchor Substitution

    Get PDF
    Major histocompatibility complex (MHC) class I variants H-2Kb and H-2Kbm8 differ primarily in the B pocket of the peptide-binding groove, which serves to sequester the P2 secondary anchor residue. This polymorphism determines resistance to lethal herpes simplex virus (HSV-1) infection by modulating T cell responses to the immunodominant glycoprotein B498-505 epitope, HSV8. We studied the molecular basis of these effects and confirmed that T cell receptors raised against Kb–HSV8 cannot recognize H-2Kbm8–HSV8. However, substitution of SerP2 to GluP2 (peptide H2E) reversed T cell receptor (TCR) recognition; H-2Kbm8–H2E was recognized whereas H-2Kb–H2E was not. Insight into the structural basis of this discrimination was obtained by determining the crystal structures of all four MHC class I molecules in complex with bound peptide (pMHCs). Surprisingly, we find no concerted pMHC surface differences that can explain the differential TCR recognition. However, a correlation is apparent between the recognition data and the underlying peptide-binding groove chemistry of the B pocket, revealing that secondary anchor residues can profoundly affect TCR engagement through mechanisms distinct from the alteration of the resting state conformation of the pMHC surface

    Uncovering Shakespeare\u27s Sisters in Special Collections and College Archives, Musselman Library

    Full text link
    Foreword by Professor Suzanne J. Flynn I have taught the first-year seminar, Shakespeare’s Sisters, several times, and over the years I have brought the seminar’s students to the Folger Shakespeare Library in Washington, D.C. There, the wonderful librarians have treated the students to a special exhibit of early women’s manuscripts and first editions, beginning with letters written by Elizabeth I and proceeding through important works by seventeen and eighteenth-century women authors such as Aemelia Lanyer, Anne Finch, Aphra Behn, and Mary Wollstonecraft. This year I worked with Carolyn Sautter, the Director of Special Collections and College Archives, to give my 2018 seminar students the opportunity to produce a sequel to the Folger exhibit of early modern women writers. Special Collections houses an impressive array of first editions from the nineteenth and twentieth centuries, many of them acquired from Thomas Y. Cooper, the former editor of the Hanover Evening Sun newspaper, who donated over 1600 items to Musselman Library in 1965. Working with Kerri Odess-Harnish, we chose first editions of eight significant works of literature written by American and British women from the mid-nineteenth through the mid-twentieth centuries. The students worked in pairs, researching a single book and producing a report that outlines important biographical facts about the author, the book’s publication and reception history, and finally the significance of the book in the years since its publication. We hope that our project will draw attention to the wealth of literary treasures housed in Special Collections at Musselman Library, but especially to these works by eight of “Shakespeare’s Sisters.

    Ground robotic measurement of aeolian processes

    Get PDF
    Models of aeolian processes rely on accurate measurements of the rates of sediment transport by wind, and careful evaluation of the environmental controls of these processes. Existing field approaches typically require intensive, event-based experiments involving dense arrays of instruments. These devices are often cumbersome and logistically difficult to set up and maintain, especially near steep or vegetated dune surfaces. Significant advances in instrumentation are needed to provide the datasets that are required to validate and improve mechanistic models of aeolian sediment transport. Recent advances in robotics show great promise for assisting and amplifying scientists’ efforts to increase the spatial and temporal resolution of many environmental measurements governing sediment transport. The emergence of cheap, agile, human-scale robotic platforms endowed with increasingly sophisticated sensor and motor suites opens up the prospect of deploying programmable, reactive sensor payloads across complex terrain in the service of aeolian science. This paper surveys the need and assesses the opportunities and challenges for amassing novel, highly resolved spatiotemporal datasets for aeolian research using partially-automated ground mobility. We review the limitations of existing measurement approaches for aeolian processes, and discuss how they may be transformed by ground-based robotic platforms, using examples from our initial field experiments. We then review how the need to traverse challenging aeolian terrains and simultaneously make high-resolution measurements of critical variables requires enhanced robotic capability. Finally, we conclude with a look to the future, in which robotic platforms may operate with increasing autonomy in harsh conditions. Besides expanding the completeness of terrestrial datasets, bringing ground-based robots to the aeolian research community may lead to unexpected discoveries that generate new hypotheses to expand the science itself. For more information: Kod*lab (http://kodlab.seas.upenn.edu/

    IRF-3, IRF-5, and IRF-7 Coordinately Regulate the Type I IFN Response in Myeloid Dendritic Cells Downstream of MAVS Signaling

    Get PDF
    Although the transcription factors IRF-3 and IRF-7 are considered master regulators of type I interferon (IFN) induction and IFN stimulated gene (ISG) expression, Irf3-/-×Irf7-/- double knockout (DKO) myeloid dendritic cells (mDC) produce relatively normal levels of IFN-β after viral infection. We generated Irf3-/-×Irf5-/-×Irf7-/- triple knockout (TKO) mice to test whether IRF-5 was the source of the residual induction of IFN-β and ISGs in mDCs. In pathogenesis studies with two unrelated positive-sense RNA viruses (West Nile virus (WNV) and murine norovirus), TKO mice succumbed at rates greater than DKO mice and equal to or approaching those of mice lacking the type I IFN receptor (Ifnar-/-). In ex vivo studies, after WNV infection or exposure to Toll-like receptor agonists, TKO mDCs failed to produce IFN-β or express ISGs. In contrast, this response was sustained in TKO macrophages following WNV infection. To define IRF-regulated gene signatures, we performed microarray analysis on WNV-infected mDC from wild type (WT), DKO, TKO, or Ifnar-/- mice, as well as from mice lacking the RIG-I like receptor adaptor protein MAVS. Whereas the gene induction pattern in DKO mDC was similar to WT cells, remarkably, almost no ISG induction was detected in TKO or Mavs-/- mDC. The relative equivalence of TKO and Mavs-/- responses suggested that MAVS dominantly regulates ISG induction in mDC. Moreover, we showed that MAVS-dependent induction of ISGs can occur through an IRF-5-dependent yet IRF-3 and IRF-7-independent pathway. Our results establish IRF-3, -5, and -7 as the key transcription factors responsible for mediating the type I IFN and ISG response in mDC during WNV infection and suggest a novel signaling link between MAVS and IRF-5

    IRF-3, IRF-5, and IRF-7 coordinately regulate the type I IFN response in myeloid dendritic cells downstream of MAVS signaling

    Get PDF
    Although the transcription factors IRF-3 and IRF-7 are considered master regulators of type I interferon (IFN) induction and IFN stimulated gene (ISG) expression, Irf3(-/-)×Irf7(-/-) double knockout (DKO) myeloid dendritic cells (mDC) produce relatively normal levels of IFN-β after viral infection. We generated Irf3(-/-)×Irf5(-/-)×Irf7(-/-) triple knockout (TKO) mice to test whether IRF-5 was the source of the residual induction of IFN-β and ISGs in mDCs. In pathogenesis studies with two unrelated positive-sense RNA viruses (West Nile virus (WNV) and murine norovirus), TKO mice succumbed at rates greater than DKO mice and equal to or approaching those of mice lacking the type I IFN receptor (Ifnar(-/-)). In ex vivo studies, after WNV infection or exposure to Toll-like receptor agonists, TKO mDCs failed to produce IFN-β or express ISGs. In contrast, this response was sustained in TKO macrophages following WNV infection. To define IRF-regulated gene signatures, we performed microarray analysis on WNV-infected mDC from wild type (WT), DKO, TKO, or Ifnar(-/-) mice, as well as from mice lacking the RIG-I like receptor adaptor protein MAVS. Whereas the gene induction pattern in DKO mDC was similar to WT cells, remarkably, almost no ISG induction was detected in TKO or Mavs(-/-) mDC. The relative equivalence of TKO and Mavs(-/-) responses suggested that MAVS dominantly regulates ISG induction in mDC. Moreover, we showed that MAVS-dependent induction of ISGs can occur through an IRF-5-dependent yet IRF-3 and IRF-7-independent pathway. Our results establish IRF-3, -5, and -7 as the key transcription factors responsible for mediating the type I IFN and ISG response in mDC during WNV infection and suggest a novel signaling link between MAVS and IRF-5

    Polyfunctional T cell responses in children in early stages of chronic Trypanosoma cruzi infection contrast with monofunctional responses of long-term infected adults

    Get PDF
    Background: Adults with chronic Trypanosoma cruzi exhibit a poorly functional T cell compartment, characterized by monofunctional (IFN-γ-only secreting) parasite-specific T cells and increased levels of terminally differentiated T cells. It is possible that persistent infection and/or sustained exposure to parasites antigens may lead to a progressive loss of function of the immune T cells. Methodology/Principal Findings: To test this hypothesis, the quality and magnitude of T. cruzi-specific T cell responses were evaluated in T. cruzi-infected children and compared with long-term T. cruzi-infected adults with no evidence of heart failure. The phenotype of CD4+ T cells was also assessed in T. cruzi-infected children and uninfected controls. Simultaneous secretion of IFN-γ and IL-2 measured by ELISPOT assays in response to T. cruzi antigens was prevalent among T. cruzi-infected children. Flow cytometric analysis of co-expression profiles of CD4+ T cells with the ability to produce IFN-γ, TNF-α, or to express the co-stimulatory molecule CD154 in response to T. cruzi showed polyfunctional T cell responses in most T. cruzi-infected children. Monofunctional T cell responses and an absence of CD4+TNF-α+-secreting T cells were observed in T. cruzi-infected adults. A relatively high degree of activation and differentiation of CD4+ T cells was evident in T. cruzi-infected children. Conclusions/Significance: Our observations are compatible with our initial hypothesis that persistent T. cruzi infection promotes eventual exhaustion of immune system, which might contribute to disease progression in long-term infected subjects.Fil: Albareda, María Cecilia. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud. Instituto Nacional de Parasitología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Provincia de Buenos Aires. Ministerio de Salud. Hospital Interzonal de Agudos "Eva Perón"; ArgentinaFil: de Rissio, Ana María. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud. Instituto Nacional de Parasitología; ArgentinaFil: Tomas, Gonzalo. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud. Instituto Nacional de Parasitología; ArgentinaFil: Serjan, Alicia. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Juan A. Fernández"; ArgentinaFil: Alvarez, María Gabriela. Provincia de Buenos Aires. Ministerio de Salud. Hospital Interzonal de Agudos "Eva Perón"; ArgentinaFil: Viotti, Rodolfo Jorge. Provincia de Buenos Aires. Ministerio de Salud. Hospital Interzonal de Agudos "Eva Perón"; ArgentinaFil: Fichera, Laura Edith. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud. Instituto Nacional de Parasitología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Esteva, Mónica Inés. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud. Instituto Nacional de Parasitología; ArgentinaFil: Potente, Daniel Fernando. Provincia de Buenos Aires. Ministerio de Salud. Hospital Interzonal de Agudos "Eva Perón"; ArgentinaFil: Armenti, Alejandro. Provincia de Buenos Aires. Ministerio de Salud. Hospital Interzonal de Agudos "Eva Perón"; ArgentinaFil: Tarleton, Rick L.. University of Georgia; Estados UnidosFil: Laucella, Susana Adriana. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud. Instituto Nacional de Parasitología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Lifespan-Extending Caloric Restriction or mTOR Inhibition Impair Adaptive Immunity of Old Mice By Distinct Mechanisms

    Get PDF
    Aging of the world population and a concomitant increase in age-related diseases and disabilities mandates the search for strategies to increase healthspan, the length of time an individual lives healthy and productively. Due to the age-related decline of the immune system, infectious diseases remain among the top 5–10 causes of mortality and morbidity in the elderly, and improving immune function during aging remains an important aspect of healthspan extension. Calorie restriction (CR) and more recently rapamycin (rapa) feeding have both been used to extend lifespan in mice. Preciously few studies have actually investigated the impact of each of these interventions upon in vivo immune defense against relevant microbial challenge in old organisms. We tested how rapa and CR each impacted the immune system in adult and old mice. We report that each intervention differentially altered T-cell development in the thymus, peripheral T-cell maintenance, T-cell function and host survival after West Nile virus infection, inducing distinct but deleterious consequences to the aging immune system. We conclude that neither rapa feeding nor CR, in the current form/administration regimen, may be optimal strategies for extending healthy immune function and, with it, lifespan

    Immune Response to the West Nile Virus in Aged Non-Human Primates

    Get PDF
    Background: Risk of encephalitis from West Nile virus (WNV) infection increases dramatically with age. Understanding the basis of this susceptibility requires development of suitable animal models. Here, we investigated the immune response to WNV in old non-human primates. Methodology/Principal Findings: We investigated clinical, immunological and virological correlates of WNV infection in aging non-human primates. Aged (17-30yrs) and adult (6-9yrs) Rhesus macaques (RM) were challenged with WNV in the presence or the absence of the mosquito salivary gland extract (SGE) to approximate natural infection. None of the 26 animals exhibited clinical signs of the disease. Quantitative PCR suggested discrete and short-lived viremia, but infectious virus was never isolated. There was markedly increased, age-independent, proliferation of CD3- non-B cells, followed by Bcell proliferation, which correlated to the loss of detectable WNV genomes. Moreover, animals primed with mosquito salivary gland extract exhibited reduced circulating WNV RNA. While we found the expected age-associated reduction in T cell proliferation, adaptive immunity did not correlate with infection outcome. That was further confirmed in a cohort of thymectomized and/or CD8 T-cell depleted Cynomolgus macaques (CM; N = 15), who also failed to develop WNV disease. Conclusions/significance: Results are consistent with strong and age-independent innate resistance of macaques against WNV challenge. This animal model is therefore not suitable for vaccine and therapeutic testing against WNV. However, understanding the basis of their innate resistance against WNV in macaques could provide helpful clues to improve anti- WNV protection of older adults. © 2010 Wertheimer et al

    Global analyses revealed age-related alterations in innate immune responses after stimulation of pathogen recognition receptors

    Get PDF
    Aging leads to dysregulation of multiple components of the immune system that results in increased susceptibility to infections and poor response to vaccines in the aging population. The dysfunctions of adaptive B and T cells are well documented, but the effect of aging on innate immunity remains incompletely understood. Using a heterogeneous population of peripheral blood mononuclear cells (PBMCs), we first undertook transcriptional profiling and found that PBMCs isolated from old individuals (≥ 65 years) exhibited a delayed and altered response to stimulation with TLR4, TLR7/8, and RIG-I agonists compared to cells obtained from adults (≤ 40 years). This delayed response to innate immune agonists resulted in the reduced production of pro-inflammatory and antiviral cytokines and chemokines including TNFα, IL-6, IL-1β, IFNα, IFNγ, CCL2, and CCL7. While the major monocyte and dendritic cell subsets did not change numerically with aging, activation of specific cell types was altered. PBMCs from old subjects also had a lower frequency of CD40+ monocytes, impaired up-regulation of PD-L1 on monocytes and T cells, and increased expression of PD-L2 and B7-H4 on B cells. The defective immune response to innate agonists adversely affected adaptive immunity as TLR-stimulated PBMCs (minus CD3 T cells) from old subjects elicited significantly lower levels of adult T-cell proliferation than those from adult subjects in an allogeneic mixed lymphocyte reaction (MLR). Collectively, these age-associated changes in cytokine, chemokine and interferon production, as well as co-stimulatory protein expression could contribute to the blunted memory B- and T-cell immune responses to vaccines and infections
    corecore