6 research outputs found

    A Clinical and Biological Guide for Understanding Chemotherapy-Induced Alopecia and its Prevention

    Get PDF
    Chemotherapy-induced alopecia (CIA) is the most visibly distressing side effect of commonly administered chemotherapeutic agents. As psychological health has huge relevance on lifestyle, diet and self-esteem, it is important for clinicians to fully appreciate the psychological burden that CIA can place on patients. Here, for the first time, we provide a comprehensive review encompassing the molecular characteristics of the human hair follicle (HF), how different anticancer agents damage the HF to cause CIA, subsequent HF pathophysiology and we assess known and emerging prevention modalities that have aimed to reduce or prevent CIA. We argue that, at present, scalp cooling is the only safe and FDA-cleared modality available, and we highlight the extensive available clinical and experimental (biological) evidence for its efficacy. The likelihood of a patient that uses scalp cooling during chemotherapy maintaining enough hair to not require a wig is approximately 50%. This is despite different types of chemotherapy regimens, patient-specific differences and possible lack of staff experience in effectively delivering scalp cooling. The increased use of scalp cooling and an understanding of how to deliver it most effectively to patients has enormous potential to ease the psychological burden of CIA, until other, more efficacious, equally safe treatments become available

    Dabigatran in the Treatment of Warfarin-Induced Skin Necrosis: A New Hope

    No full text
    Warfarin-induced skin necrosis is an infrequent and well-recognized complication of warfarin treatment. The incidence was estimated between 0.01% and 0.1% whereas a paradoxal prothrombotic state that arises from warfarin therapy seems to be responsible for this life-threatening disease. To the best of our knowledge we present the first case of an old woman diagnosed with warfarin-induced skin necrosis, in whom novel oral anticoagulants and extensive surgical debridement were combined safely with excellent results

    Expression, localisation and potential significance of aquaporins in benign and malignant human prostate tissue

    Get PDF
    Abstract Background To study the expression pattern, localisation and potential clinical significance of aquaporin water channels (AQP) both in prostate cancer (PC) cell lines and in benign and malignant human prostate tissue. Methods The AQP transcript and protein expression of HPrEC, LNCaP, DU-145 and PC3 cell lines was investigated using reverse transcriptase polymerase chain reaction (RT-PCR) and immunofluorescence (IF) microscopy labelling. Immunohistochemistry (IHC) was performed to assess AQP protein expression in surgical specimens of benign prostatic hyperplasia as well as in PC. Tissue mRNA expression of AQPs was quantified by single-step reverse transcriptase quantitative polymerase chain reaction (qPCR). Relative gene expression was determined using the 40-ΔCT method and correlated to clinicopathological parameters. Results Transcripts of AQP 1, 3, 4, 7, 8, 10 and 11 were expressed in all four cell lines, while AQP 9 transcripts were not detected in malignant cell lines. IF microscopy confirmed AQP 3, 4, 5, 7 and 9 protein expression. IHC revealed highly heterogeneous AQP 3 protein expression in PC specimens, with a marked decrease in expression in tumours of increasing malignancy. Loss of AQP 9 was shown in PC specimens. mRNA expression of AQP3 was found to be negatively correlated to PSA levels (ρ = − 0.354; p = 0.013), D’Amico risk stratification (ρ = − 0.336; p = 0.012), ISUP grade (ρ = − 0.321; p = 0.017) and Gleason score (ρ = − 0.342; p = 0.011). Conclusions This is the first study to systematically characterize human prostate cell lines, benign prostatic hyperplasia and PC in relation to all 13 members of the AQP family. Our results indicate the differential expression of several AQPs in benign and malignant prostate tissue. A significant correlation was observed between AQP 3 expression and tumour grade, with progressive loss in more malignant tumours. Taken together, AQPs may play a role in the progression of PC and AQP expression patterns may serve as a prognostic marker
    corecore