23 research outputs found

    Abs: a high-level modeling language for cloud-aware programming

    Get PDF
    Cloud technology has become an invaluable tool to the IT business, because of its attractive economic model. Yet, from the programmers’ perspective, the development of cloud applications remains a major challenge. In this paper we introduce a programming language that allows Cloud applications to monitor and control their own deployment. Our language originates from the Abstract Behavioral Specification (ABS) language: a high-level object-oriented language for modeling concurrent systems.We extend the ABS language with Deployment Components which abstract over Virtual Machines of the Cloud and which enable any ABS application to distribute itself among multiple Cloud-machines. ABS models are executed by transforming them to distributed-object Haskell code. As a result, we obtain a Cloud-aware programming language which supports a full development cycle including modeling, resource analysis and code generation

    Ecotruck: An Agent System for Paper Recycling

    Get PDF
    Abstract. Recycling has been gaining ground, thanks to the recent progress made in the related technology. However, a limiting factor to its wide adoption, is the lack of modern tools for managing the collection of recyclable resources. In this paper, we present EcoTruck, a management system for the collection of recyclable paper products. EcoTruck is modelled as a multi-agent system and its implementation employs Erlang, a distribution-oriented declarative language. The system aims to automate communication and cooperation of parties involved in the collection process, as well as optimise vehicle routing. The latter have the effect of minimising vehicle travel distances and subsequently lowering transportation costs. By speeding up the overall recycling process, the system could increase the service throughput, eventually introducing recycling methods to a larger audience

    On futures for streaming data in abs

    Get PDF
    Many modern distributed software applications require a continuous interaction between their components exploiting streaming data from the server to the client. The Abstract Behavioral Specification (ABS) language has been developed for the modeling and analysis of distributed systems. In ABS, concurrent objects communicate by calling each other’s methods asynchronously. Return values are communicated asynchronously too via the return statement and so-called futures. In this paper, we extend the basic ABS model of asynchronous method invocation and return in order to support the streaming of data. We introduce the notion of a “Future-based Data Stream” to extend the ABS. The application of this notion and its impact on performance are illustrated by means of a case study in the domain of social networks simulation

    Human-in-the-loop simulation of Cloud services

    Get PDF
    In this paper we discuss an integrated tool suite for the simulation of software services which are offered on the Cloud. The tool suite uses the Abstract Behavioral Specification (ABS) language for modeling the software services and their Cloud deployment. For the real-time execution of the ABS models we use a Haskell backend which is based on a source-to-source translation of ABS into Haskell. The tool suite then allows Cloud engineers to interact in real-time with the execution of the model by deploying and managing service instances. The resulting human-in-the-loop simulation of Cloud services can be used both for training purposes and for the (semi-)automated support for the real-time monitoring and management of the actual service instances

    A high-level and scalable approach for generating scale-free graphs using active objects

    Get PDF
    The Barabasi-Albert model (BA) is designed to generate scale-free networks using the preferential attachment mechanism. In the preferential attachment (PA) model, new nodes are sequentially introduced to the network and they attach preferentially to existing nodes. PA is a classical model with a natural intuition, great explanatory power and a simple mechanism. Therefore, PA is widely-used for network generation. However the sequential mechanism used in the PA model makes it an inefficient algorithm. The existing parallel approaches, on the other hand, suffer from either changing the original model or explicit complex low-level synchronization mechanisms. In this paper we investigate a high-level Actor-based model of the parallel algorithm of network generation and its scalable multicore implementation in Haskell

    A formal actor-based model for streaming the future

    Get PDF
    Asynchronous Actor-based programming has gained increasing attention as a model of concurrency and distribution. The Abstract Behavioral Specification (ABS) language is an actor-based programming language that has been developed for both the modeling and formal analysis of distributed systems. In ABS, actors are modeled as concurrent objects that communicate by asynchronous method calls. Return values are also communicated asynchronously via return statements and so-called futures. Many modern distributed software

    A Formal, Resource Consumption-Preserving Translation of Actors to Haskell

    Get PDF
    We present a formal translation of an actor-based language with cooperative scheduling to the functional language Haskell. The translation is proven correct with respect to a formal semantics of the source language and a high-level operational semantics of the target, i.e. a subset of Haskell. The main correctness theorem is expressed in terms of a simulation relation between the operational semantics of actor programs and their translation. This allows us to then prove that the resource consumption is preserved over this translation, as we establish an equivalence of the cost of the original and Haskell-translated execution traces

    Implementing SOS with active objects: A case study of a multicore memory system

    Get PDF
    This paper describes the development of a parallel simulator of a multicore memory system from a model formalized as a structural operational semantics (SOS). Our implementation uses the Abstract Behavioral Specification (ABS) language, an executable, active object modelling language with a formal semantics, targeting distributed systems. We develop general design patterns in ABS for implementing SOS, and describe their application to the SOS model of multicore memory systems. We show how these patterns allow a formal correctness proof that the implementation simulates the formal operational model and discuss further parallelization and fairness of the simulator

    A formal, resource consumption-preserving translation from actors with cooperative scheduling to Haskell

    Get PDF
    We present a formal translation of a resource-Aware extension of the Abstract Behavioral Specification (ABS) language to the functional language Haskell. ABS is an actor-based language tailored to the modeling of distributed systems. It combines asynchronous method calls with a suspend and resume mode of execution of the method invocations. To cater for the resulting cooperative scheduling of the method invocations of an actor, the translation exploits for the compilation of ABS methods Haskell functions with continuations. The main result of this article is a correctness proof of the translation by means of a simulation relation between a formal semantics of the source language and a high-level operational semantics of the target language, i.e., a subset of Haskell. We further prove that the resource consumption of an ABS program extended with a cost model is preserved over this translation, as we establish an equivalence of the cost of executing the ABS program and its corresponding Haskell-Translation. Concretely, the resources consumed by the original ABS program and those consumed by the Haskell program are the same, considering a cost model. Consequently, the resource bounds automatically inferred for ABS programs extended with a cost model, using resource analysis tools, are sound resource bounds also for the translated Haskell programs. Our experimental evaluation confirms the resource preservation over a set of benchmarks featuring different asymptotic costs

    Abstract behavioral specification: unifying modeling and programming

    No full text
    We strive to address the challenge of constructing a modeling language to write software which can take advantage of recent hardware developments (multicore, cloud) without compromising in its abstraction levels. Our language is based on top of the Abstract Behavioral Specification (ABS), which is an executable modeling language with a focus on cooperative-multitasking concurrency. We translate programs written in ABS to Haskell, an established functional programming language, since Haskell supports both cooperative concurrency in the form of coroutines, and multicore parallelism through lightweight threads of execution. Further, we formally prove the correctness as well as the resource-consumption preservation of the translation of a subset of our language to Haskell.To enable software models take control of their computing resources, we extend our language with certain constructs that abstract over the hardware. This resource-aware language extension is packaged in a tool-suite for human-in-the-loop simulation of Cloud services; such a live simulation can be used for training DevOps to the cloud environment of IT companies.Finally, we provide an implementation of distributed communication to the Cloud infrastructure, so that software models written in ABS can be executed as distributed applications, which can programmatically monitor and control their own Cloud deployment.Algorithms and the Foundations of Software technolog
    corecore